| #include <gtest/gtest.h> |
| #include <filesystem> |
| #include <string> |
| #include <vector> |
| |
| #include <torch/csrc/inductor/aoti_model_container_runner.h> |
| #ifdef USE_CUDA |
| #include <torch/csrc/inductor/aoti_model_container_runner_cuda.h> |
| #endif |
| #include <torch/script.h> |
| #include <torch/torch.h> |
| |
| #define STR_VALUE(x) #x |
| #define STRINGIZE(x) STR_VALUE(x) |
| |
| namespace { |
| |
| void test_aoti(const std::string& device) { |
| torch::NoGradGuard no_grad; |
| |
| std::string data_path = |
| (std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt") |
| .string(); |
| torch::jit::script::Module data_loader = torch::jit::load(data_path); |
| std::string path_attr = "model_so_path_" + device; |
| std::string inputs_attr = "inputs_" + device; |
| std::string outputs_attr = "outputs_" + device; |
| const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef(); |
| const auto& input_tensors = |
| data_loader.attr(inputs_attr.c_str()).toTensorList().vec(); |
| const auto& ref_output_tensors = |
| data_loader.attr(outputs_attr.c_str()).toTensorList().vec(); |
| |
| std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner; |
| if (device == "cuda") { |
| runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>( |
| model_so_path.c_str()); |
| } else if (device == "cpu") { |
| runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>( |
| model_so_path.c_str()); |
| } else { |
| testing::AssertionFailure() << "unsupported device: " << device; |
| } |
| auto actual_output_tensors = runner->run(input_tensors); |
| ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0])); |
| } |
| |
| void test_aoti_script(const std::string& device) { |
| torch::NoGradGuard no_grad; |
| |
| std::string script_model = "script_model_" + device + ".pt"; |
| std::string model_path = |
| (std::filesystem::path( |
| STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / script_model.c_str()) |
| .string(); |
| torch::jit::script::Module model = torch::jit::load(model_path); |
| |
| std::string sample_data_path = |
| (std::filesystem::path( |
| STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "script_data.pt") |
| .string(); |
| torch::jit::script::Module sample_data = torch::jit::load(sample_data_path); |
| std::string inputs_attr = "inputs_" + device; |
| std::string outputs_attr = "outputs_" + device; |
| const auto& inputs = sample_data.attr(inputs_attr.c_str()).toList().vec(); |
| const auto& ref_output_tensors = |
| sample_data.attr(outputs_attr.c_str()).toTensorVector(); |
| auto outputs = model.forward(inputs).toTuple()->elements(); |
| ASSERT_EQ(outputs.size(), ref_output_tensors.size()); |
| for (size_t i = 0; i < ref_output_tensors.size(); i++) { |
| ASSERT_TRUE(torch::allclose(outputs[i].toTensor(), ref_output_tensors[i])); |
| } |
| } |
| |
| } // namespace |
| |
| namespace torch { |
| namespace inductor { |
| |
| TEST(AotInductorTest, BasicTestCpu) { |
| test_aoti("cpu"); |
| } |
| |
| TEST(AotInductorTest, BasicScriptTestCpu) { |
| test_aoti_script("cpu"); |
| } |
| |
| #ifdef USE_CUDA |
| TEST(AotInductorTest, BasicTestCuda) { |
| test_aoti("cuda"); |
| } |
| |
| TEST(AotInductorTest, BasicScriptTestCuda) { |
| test_aoti_script("cuda"); |
| } |
| #endif |
| |
| } // namespace inductor |
| } // namespace torch |