blob: 2cd164693e57d39e70f6c85ae68b0843684b12ec [file] [log] [blame]
#pragma once
#include <cstdint>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <c10/core/OptionalRef.h>
#include <c10/core/ScalarType.h>
#include <c10/core/SymBool.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/macros/Export.h>
#include <c10/macros/Macros.h>
#include <c10/util/Deprecated.h>
#include <c10/util/Exception.h>
#include <c10/util/Half.h>
#include <c10/util/TypeCast.h>
#include <c10/util/complex.h>
#include <c10/util/intrusive_ptr.h>
namespace c10 {
/**
* Scalar represents a 0-dimensional tensor which contains a single element.
* Unlike a tensor, numeric literals (in C++) are implicitly convertible to
* Scalar (which is why, for example, we provide both add(Tensor) and
* add(Scalar) overloads for many operations). It may also be used in
* circumstances where you statically know a tensor is 0-dim and single size,
* but don't know its type.
*/
class C10_API Scalar {
public:
Scalar() : Scalar(int64_t(0)) {}
void destroy() {
if (Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag) {
raw::intrusive_ptr::decref(v.p);
v.p = nullptr;
}
}
~Scalar() {
destroy();
}
#define DEFINE_IMPLICIT_CTOR(type, name) \
Scalar(type vv) : Scalar(vv, true) {}
AT_FORALL_SCALAR_TYPES_AND7(
Half,
BFloat16,
Float8_e5m2,
Float8_e4m3fn,
Float8_e5m2fnuz,
Float8_e4m3fnuz,
ComplexHalf,
DEFINE_IMPLICIT_CTOR)
AT_FORALL_COMPLEX_TYPES(DEFINE_IMPLICIT_CTOR)
// Helper constructors to allow Scalar creation from long and long long types
// As std::is_same_v<long, long long> is false(except Android), one needs to
// provide a constructor from either long or long long in addition to one from
// int64_t
#if defined(__APPLE__) || defined(__MACOSX)
static_assert(
std::is_same_v<long long, int64_t>,
"int64_t is the same as long long on MacOS");
Scalar(long vv) : Scalar(vv, true) {}
#endif
#if defined(__linux__) && !defined(__ANDROID__)
static_assert(
std::is_same_v<long, int64_t>,
"int64_t is the same as long on Linux");
Scalar(long long vv) : Scalar(vv, true) {}
#endif
Scalar(uint16_t vv) : Scalar(vv, true) {}
Scalar(uint32_t vv) : Scalar(vv, true) {}
Scalar(uint64_t vv) {
if (vv > static_cast<uint64_t>(INT64_MAX)) {
tag = Tag::HAS_u;
v.u = vv;
} else {
tag = Tag::HAS_i;
// NB: no need to use convert, we've already tested convertibility
v.i = static_cast<int64_t>(vv);
}
}
#undef DEFINE_IMPLICIT_CTOR
// Value* is both implicitly convertible to SymbolicVariable and bool which
// causes ambiguity error. Specialized constructor for bool resolves this
// problem.
template <
typename T,
typename std::enable_if_t<std::is_same_v<T, bool>, bool>* = nullptr>
Scalar(T vv) : tag(Tag::HAS_b) {
v.i = convert<int64_t, bool>(vv);
}
template <
typename T,
typename std::enable_if_t<std::is_same_v<T, c10::SymBool>, bool>* =
nullptr>
Scalar(T vv) : tag(Tag::HAS_sb) {
v.i = convert<int64_t, c10::SymBool>(vv);
}
#define DEFINE_ACCESSOR(type, name) \
type to##name() const { \
if (Tag::HAS_d == tag) { \
return checked_convert<type, double>(v.d, #type); \
} else if (Tag::HAS_z == tag) { \
return checked_convert<type, c10::complex<double>>(v.z, #type); \
} \
if (Tag::HAS_b == tag) { \
return checked_convert<type, bool>(v.i, #type); \
} else if (Tag::HAS_i == tag) { \
return checked_convert<type, int64_t>(v.i, #type); \
} else if (Tag::HAS_u == tag) { \
return checked_convert<type, uint64_t>(v.u, #type); \
} else if (Tag::HAS_si == tag) { \
return checked_convert<type, int64_t>( \
toSymInt().guard_int(__FILE__, __LINE__), #type); \
} else if (Tag::HAS_sd == tag) { \
return checked_convert<type, int64_t>( \
toSymFloat().guard_float(__FILE__, __LINE__), #type); \
} else if (Tag::HAS_sb == tag) { \
return checked_convert<type, int64_t>( \
toSymBool().guard_bool(__FILE__, __LINE__), #type); \
} \
TORCH_CHECK(false) \
}
// TODO: Support ComplexHalf accessor
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ACCESSOR)
DEFINE_ACCESSOR(uint16_t, UInt16)
DEFINE_ACCESSOR(uint32_t, UInt32)
DEFINE_ACCESSOR(uint64_t, UInt64)
#undef DEFINE_ACCESSOR
SymInt toSymInt() const {
if (Tag::HAS_si == tag) {
return c10::SymInt(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toLong();
}
}
SymFloat toSymFloat() const {
if (Tag::HAS_sd == tag) {
return c10::SymFloat(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toDouble();
}
}
SymBool toSymBool() const {
if (Tag::HAS_sb == tag) {
return c10::SymBool(intrusive_ptr<SymNodeImpl>::reclaim_copy(
static_cast<SymNodeImpl*>(v.p)));
} else {
return toBool();
}
}
// also support scalar.to<int64_t>();
// Deleted for unsupported types, but specialized below for supported types
template <typename T>
T to() const = delete;
// audit uses of data_ptr
const void* data_ptr() const {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<const void*>(&v);
}
bool isFloatingPoint() const {
return Tag::HAS_d == tag || Tag::HAS_sd == tag;
}
C10_DEPRECATED_MESSAGE(
"isIntegral is deprecated. Please use the overload with 'includeBool' parameter instead.")
bool isIntegral() const {
return Tag::HAS_i == tag || Tag::HAS_si == tag || Tag::HAS_u == tag;
}
bool isIntegral(bool includeBool) const {
return Tag::HAS_i == tag || Tag::HAS_si == tag || Tag::HAS_u == tag ||
(includeBool && isBoolean());
}
bool isComplex() const {
return Tag::HAS_z == tag;
}
bool isBoolean() const {
return Tag::HAS_b == tag || Tag::HAS_sb == tag;
}
// you probably don't actually want these; they're mostly for testing
bool isSymInt() const {
return Tag::HAS_si == tag;
}
bool isSymFloat() const {
return Tag::HAS_sd == tag;
}
bool isSymBool() const {
return Tag::HAS_sb == tag;
}
bool isSymbolic() const {
return Tag::HAS_si == tag || Tag::HAS_sd == tag || Tag::HAS_sb == tag;
}
C10_ALWAYS_INLINE Scalar& operator=(Scalar&& other) noexcept {
if (&other == this) {
return *this;
}
destroy();
moveFrom(std::move(other));
return *this;
}
C10_ALWAYS_INLINE Scalar& operator=(const Scalar& other) {
if (&other == this) {
return *this;
}
*this = Scalar(other);
return *this;
}
Scalar operator-() const;
Scalar conj() const;
Scalar log() const;
template <
typename T,
typename std::enable_if_t<!c10::is_complex<T>::value, int> = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
auto val = v.z;
return (val.real() == num) && (val.imag() == T());
} else if (isFloatingPoint()) {
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
return v.d == num;
} else if (tag == Tag::HAS_i) {
if (overflows<T>(v.i, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.i) == num;
}
} else if (tag == Tag::HAS_u) {
if (overflows<T>(v.u, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.u) == num;
}
} else if (tag == Tag::HAS_si) {
TORCH_INTERNAL_ASSERT(false, "NYI SymInt equality");
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
template <
typename T,
typename std::enable_if_t<c10::is_complex<T>::value, int> = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return v.z == num;
} else if (isFloatingPoint()) {
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
return (v.d == num.real()) && (num.imag() == T());
} else if (tag == Tag::HAS_i) {
if (overflows<T>(v.i, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.i) == num.real() && num.imag() == T();
}
} else if (tag == Tag::HAS_u) {
if (overflows<T>(v.u, /* strict_unsigned */ true)) {
return false;
} else {
return static_cast<T>(v.u) == num.real() && num.imag() == T();
}
} else if (tag == Tag::HAS_si) {
TORCH_INTERNAL_ASSERT(false, "NYI SymInt equality");
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
bool equal(bool num) const {
if (isBoolean()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<bool>(v.i) == num;
} else {
return false;
}
}
ScalarType type() const {
if (isComplex()) {
return ScalarType::ComplexDouble;
} else if (isFloatingPoint()) {
return ScalarType::Double;
} else if (isIntegral(/*includeBool=*/false)) {
// Represent all integers as long, UNLESS it is unsigned and therefore
// unrepresentable as long
if (Tag::HAS_u == tag) {
return ScalarType::UInt64;
}
return ScalarType::Long;
} else if (isBoolean()) {
return ScalarType::Bool;
} else {
throw std::runtime_error("Unknown scalar type.");
}
}
Scalar(Scalar&& rhs) noexcept : tag(rhs.tag) {
moveFrom(std::move(rhs));
}
Scalar(const Scalar& rhs) : tag(rhs.tag), v(rhs.v) {
if (isSymbolic()) {
c10::raw::intrusive_ptr::incref(v.p);
}
}
Scalar(c10::SymInt si) {
if (auto m = si.maybe_as_int()) {
tag = Tag::HAS_i;
v.i = *m;
} else {
tag = Tag::HAS_si;
v.p = std::move(si).release();
}
}
Scalar(c10::SymFloat sd) {
if (sd.is_symbolic()) {
tag = Tag::HAS_sd;
v.p = std::move(sd).release();
} else {
tag = Tag::HAS_d;
v.d = sd.as_float_unchecked();
}
}
Scalar(c10::SymBool sb) {
if (auto m = sb.maybe_as_bool()) {
tag = Tag::HAS_b;
v.i = *m;
} else {
tag = Tag::HAS_sb;
v.p = std::move(sb).release();
}
}
// We can't set v in the initializer list using the
// syntax v{ .member = ... } because it doesn't work on MSVC
private:
enum class Tag { HAS_d, HAS_i, HAS_u, HAS_z, HAS_b, HAS_sd, HAS_si, HAS_sb };
// Note [Meaning of HAS_u]
// ~~~~~~~~~~~~~~~~~~~~~~~
// HAS_u is a bit special. On its face, it just means that we
// are holding an unsigned integer. However, we generally don't
// distinguish between different bit sizes in Scalar (e.g., we represent
// float as double), instead, it represents a mathematical notion
// of some quantity (integral versus floating point). So actually,
// HAS_u is used solely to represent unsigned integers that could
// not be represented as a signed integer. That means only uint64_t
// potentially can get this tag; smaller types like uint8_t fits into a
// regular int and so for BC reasons we keep as an int.
// NB: assumes that self has already been cleared
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
C10_ALWAYS_INLINE void moveFrom(Scalar&& rhs) noexcept {
v = rhs.v;
tag = rhs.tag;
if (rhs.tag == Tag::HAS_si || rhs.tag == Tag::HAS_sd ||
rhs.tag == Tag::HAS_sb) {
// Move out of scalar
rhs.tag = Tag::HAS_i;
rhs.v.i = 0;
}
}
Tag tag;
union v_t {
double d{};
int64_t i;
// See Note [Meaning of HAS_u]
uint64_t u;
c10::complex<double> z;
c10::intrusive_ptr_target* p;
// NOLINTNEXTLINE(modernize-use-equals-default)
v_t() {} // default constructor
} v;
template <
typename T,
typename std::enable_if_t<
std::is_integral_v<T> && !std::is_same_v<T, bool>,
bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_i) {
v.i = convert<decltype(v.i), T>(vv);
}
template <
typename T,
typename std::enable_if_t<
!std::is_integral_v<T> && !c10::is_complex<T>::value,
bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_d) {
v.d = convert<decltype(v.d), T>(vv);
}
template <
typename T,
typename std::enable_if_t<c10::is_complex<T>::value, bool>* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_z) {
v.z = convert<decltype(v.z), T>(vv);
}
};
using OptionalScalarRef = c10::OptionalRef<Scalar>;
// define the scalar.to<int64_t>() specializations
#define DEFINE_TO(T, name) \
template <> \
inline T Scalar::to<T>() const { \
return to##name(); \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_TO)
DEFINE_TO(uint16_t, UInt16)
DEFINE_TO(uint32_t, UInt32)
DEFINE_TO(uint64_t, UInt64)
#undef DEFINE_TO
} // namespace c10