blob: 3f09a85a6d9799fad143f9e4fef0325816aa4ea8 [file] [log] [blame]
# Owner(s): ["module: unknown"]
import functools
import unittest
import torch
import torch.nn.functional as F
import torch.utils.flop_counter
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_utils import (
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
skipIfRocm,
)
try:
from torchvision import models as torchvision_models
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
HAS_CUDA = torch.cuda.is_available()
def FlopCounterMode(*args, **kwargs):
return torch.utils.flop_counter.FlopCounterMode(*args, **kwargs, display=False)
def get_total_flops(mode):
return str(sum(v for _, v in mode.flop_counts["Global"].items()))
def T(*shape, requires_grad=False):
return torch.randn(*shape, requires_grad=requires_grad)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "torchdynamo doesn't work with __torch_dispatch__ right now"
)
class TestFlopCounter(TestCase):
def test_flop_counter_variety(self):
mod = torch.nn.Linear(9, 10)
with FlopCounterMode() as mode:
torch.mm(T(4, 5), T(5, 6))
torch.addmm(T(4, 6), T(4, 5), T(5, 6), beta=0.5, alpha=0.5)
torch.matmul(T(5, 6), T(6, 7))
torch.einsum("ab,bc->ac", T(6, 7), T(7, 8))
mod(T(8, 9))
self.assertExpectedInline(get_total_flops(mode), """3012""")
def test_op(self):
with FlopCounterMode() as mode:
torch.mm(T(4, 5), T(5, 6))
# 4 * 6 * 2 * 5 = 240
self.assertExpectedInline(get_total_flops(mode), """240""")
with mode:
torch.bmm(T(3, 4, 5), T(3, 5, 6))
# 3 * 4 * 6 * 2 * 5 = 720
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.addmm(T(4, 6), T(4, 5), T(5, 6))
torch.addmm(T(4, 1), T(4, 5), T(5, 6))
torch.addmm(T(6), T(4, 5), T(5, 6))
# 4 * 6 * 2 * 5 = 240
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.baddbmm(T(3, 4, 6), T(3, 4, 5), T(3, 5, 6))
# 3 * 4 * 6 * 2 * 5 = 720
self.assertExpectedInline(get_total_flops(mode), """720""")
with mode:
torch.conv2d(T(2, 3, 6, 6), T(6, 3, 4, 4), padding=1)
# out_image_size = 2 * 5 * 5
# kernel_size = 4 * 4
# c_out = 6
# c_in = 3
# out_image_size * kernel_size * c_out * 2 * c_in
# NB: I don't think this properly accounts for padding?
self.assertExpectedInline(get_total_flops(mode), """28800""")
with mode:
torch.conv1d(T(2, 3, 6), T(6, 3, 4), padding=1)
# out_image_size = 2 * 5
# kernel_size = 4
# c_out = 6
# c_in = 3
# out_image_size * kernel_size * c_out * 2 * c_in
# NB: I don't think this properly accounts for padding?
self.assertExpectedInline(get_total_flops(mode), """1440""")
def test_backward(self):
with FlopCounterMode() as mode:
a = T(4, 5, requires_grad=True)
a = torch.mm(a, T(5, 6))
a = a.unsqueeze(0).expand(7, 4, 6)
a = torch.bmm(a, T(7, 6, 7))
a.sum().backward()
self.assertExpectedInline(get_total_flops(mode), """5184""")
def test_backward_reset(self):
with FlopCounterMode() as mode:
a = T(4, 5, requires_grad=True)
a.mm(a.t()).sum().backward()
a.mm(a.t()).sum().backward()
self.assertExpectedInline(get_total_flops(mode), """960""")
def test_torchscript(self):
def foo(x):
return torch.mm(x, x)
with FlopCounterMode() as mode:
foo(T(5, 5))
unscripted_flops = get_total_flops(mode)
ts_foo = torch.jit.script(foo)
with mode:
ts_foo(T(5, 5))
self.assertEqual(unscripted_flops, get_total_flops(mode))
def test_autograd_op(self):
class _CustomOp(torch.autograd.Function):
@staticmethod
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
return torch.mm(input, input)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
return torch.mm(grad_output, grad_output) + torch.mm(
grad_output, grad_output
)
a = T(5, 5, requires_grad=True)
with FlopCounterMode() as mode:
a = _CustomOp.apply(a)
a.sum().backward()
self.assertExpectedInline(get_total_flops(mode), """750""")
def test_conv_backwards_as_decomposition(self):
# [conv backwards decomposition as conv forwards]
class onlyConvs(torch.autograd.Function):
@staticmethod
def forward(inp, weight, transposed):
if not transposed:
return F.conv1d(inp, weight)
else:
return F.conv_transpose1d(inp, weight)
@staticmethod
def setup_context(ctx, inputs, output):
inp, weight, transposed = inputs
ctx.save_for_backward(inp, weight)
ctx.transposed = transposed
@staticmethod
def backward(ctx, grad_out):
inp, weight = ctx.saved_tensors
if not ctx.transposed:
grad_inp = F.conv_transpose1d(grad_out, weight)
grad_weight = F.conv1d(inp, grad_out)
return grad_inp, grad_weight, None
else:
grad_inp = F.conv1d(grad_out, weight)
grad_weight = F.conv1d(
grad_out.transpose(1, 0), inp.transpose(1, 0)
)
return grad_inp, grad_weight.transpose(1, 0), None
from torch.func import grad
x = torch.randn(2, 3, 16, dtype=torch.float64)
weight = torch.randn(3, 4, 4, dtype=torch.float64)
def boring_conv(x, weight, transposed):
if not transposed:
return F.conv1d(x, weight).pow(2).sum()
else:
return F.conv_transpose1d(x, weight).pow(2).sum()
def only_convs(x, weight, transposed):
return onlyConvs.apply(x, weight, transposed).pow(2).sum()
boring_grads = grad(boring_conv, argnums=(0, 1))(x, weight, True)
fun_grads = grad(only_convs, argnums=(0, 1))(x, weight, True)
self.assertEqual(boring_grads, fun_grads)
def test_convs(self):
def assert_equivalence(f, expected_forward=None):
with FlopCounterMode() as mode:
f()
conv_forward_flops = mode.get_flop_counts()["Global"][
torch.ops.aten.convolution
]
conv_backward_flops = mode.get_flop_counts()["Global"][
torch.ops.aten.convolution_backward
]
self.assertEqual(conv_forward_flops * 2, conv_backward_flops)
if expected_forward is not None:
self.assertEqual(conv_forward_flops, expected_forward)
x = torch.rand(1, 1, 2, 2, requires_grad=True)
weight = torch.randn(1, 1, 2, 2, requires_grad=True)
assert_equivalence(lambda: F.conv_transpose2d(x, weight).sum().backward(), 32)
x = torch.rand(1, 1, 2, 2, requires_grad=True)
weight = torch.randn(1, 1, 1, 1, requires_grad=True)
assert_equivalence(lambda: F.conv2d(x, weight).sum().backward(), 8)
for in_channels, out_channels, groups in [
(1, 1, 1),
(1, 3, 1),
(3, 1, 1),
(3, 7, 1),
(2, 4, 2),
(4, 2, 2),
]:
x = torch.rand(1, in_channels, 4, 4, requires_grad=True)
weight = torch.randn(out_channels, in_channels, 2, 2, requires_grad=True)
assert_equivalence(lambda: F.conv2d(x, weight).sum().backward())
transposed_weight = torch.randn(
in_channels, out_channels, 2, 2, requires_grad=True
)
assert_equivalence(
lambda: F.conv_transpose2d(x, transposed_weight).sum().backward()
)
@skipIfNoTorchVision
def test_module(self):
resnet18 = torchvision_models.resnet18()
with FlopCounterMode(resnet18) as mode:
a = T(1, 3, 224, 224, requires_grad=True)
resnet18(a).sum().backward()
self.assertExpectedInline(get_total_flops(mode), """10884440064""")
layer1_conv_flops = mode.flop_counts["ResNet.layer1"][
torch.ops.aten.convolution
]
layer1_conv_back_flops = mode.flop_counts["ResNet.layer1"][
torch.ops.aten.convolution_backward
]
self.assertExpectedInline(str(layer1_conv_flops), """924844032""")
self.assertExpectedInline(str(layer1_conv_back_flops), """1849688064""")
def test_conv_transpose_loop(self):
x = torch.rand(1, 4, 30, 2)
model = torch.nn.ConvTranspose2d(4, 8, (2, 2), stride=2)
with FlopCounterMode() as mode:
for i in range(50):
out = model(x)
out.sum().backward()
self.assertExpectedInline(str(mode.get_total_flops()), """1536000""")
def test_custom(self):
mode = FlopCounterMode(
custom_mapping={torch.ops.aten.add: lambda *args, out_shape: 5}
)
with mode:
a = T(4, 5)
a + a
self.assertExpectedInline(get_total_flops(mode), """5""")
def count(*args, out_val):
return out_val.numel()
count._get_raw = True
mode = FlopCounterMode(custom_mapping={torch.ops.aten.add: count})
with mode:
a = T(4, 5)
a + a
self.assertExpectedInline(get_total_flops(mode), """20""")
def test_noop(self):
with FlopCounterMode() as mode:
T(4, 5).cos()
@unittest.skipIf(not HAS_CUDA, "CUDA not available")
@unittest.skipIf(
not PLATFORM_SUPPORTS_FLASH_ATTENTION
or not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
"Does not support all SDPA backends (pre-SM80 hardware on CUDA)",
)
def test_sdpa(self):
batch_size = 4
n_heads = 8
seq_len_q = 128
seq_len_k = 256
head_dim = 64
head_dim_v = 64
dtype = torch.float16
torch.manual_seed(0)
def get_flops(
batch_size,
n_heads,
seq_len_q,
seq_len_k,
head_dim,
head_dim_v,
dtype,
backend,
with_backward=False,
):
query = torch.randn(
batch_size,
n_heads,
seq_len_q,
head_dim,
device="cuda",
dtype=dtype,
requires_grad=True,
)
key = torch.randn(
batch_size,
n_heads,
seq_len_k,
head_dim,
device="cuda",
dtype=dtype,
requires_grad=True,
)
value = torch.randn(
batch_size,
n_heads,
seq_len_k,
head_dim_v,
device="cuda",
dtype=dtype,
requires_grad=True,
)
if backend == "math":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_math=True, enable_mem_efficient=False
)
elif backend == "flash":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=False, enable_mem_efficient=False
)
elif backend == "mem_efficient":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_math=False, enable_mem_efficient=True
)
mode = FlopCounterMode()
with backend, mode:
out = F.scaled_dot_product_attention(
query, key, value, dropout_p=0, is_causal=True
)
if with_backward:
out.sum().backward()
return int(get_total_flops(mode))
# Sets seq_len_q == seq_len_k and dim_q == dim_v
run_uniform_flops = functools.partial(
get_flops,
batch_size,
n_heads,
seq_len_q,
seq_len_q,
head_dim,
head_dim,
dtype,
)
flops = [
run_uniform_flops(backend, with_backward=False)
for backend in ["math", "flash", "mem_efficient"]
]
flops_fw_math, flops_fw_flash, flops_fw_efficient = flops
self.assertEqual(flops_fw_math, flops_fw_flash)
self.assertEqual(flops_fw_math, flops_fw_efficient)
self.assertExpectedInline(str(flops_fw_math), """134217728""")
flops = [
run_uniform_flops(backend, with_backward=True)
for backend in ["math", "flash", "mem_efficient"]
]
flops_fw_bw_math, flops_fw_bw_flash, flops_fw_bw_efficient = flops
self.assertEqual(flops_fw_math * 3, flops_fw_bw_math)
self.assertEqual(flops_fw_math * 7 // 2, flops_fw_bw_flash)
self.assertEqual(flops_fw_bw_flash, flops_fw_bw_efficient)
run_nonuniform_flops = functools.partial(
get_flops,
batch_size,
n_heads,
seq_len_q,
seq_len_k,
head_dim,
head_dim_v,
dtype,
)
# Flash does not support non-uniform attention, i.e. seq_len_q != seq_len_k or dim_q != dim_v"
non_uniform_backends = ["math", "mem_efficient"]
flops = [
run_nonuniform_flops(backend, with_backward=False)
for backend in non_uniform_backends
]
flops_fw_math, flops_fw_efficient = flops
self.assertEqual(flops_fw_math, flops_fw_efficient)
self.assertExpectedInline(str(flops_fw_math), """268435456""")
flops = [
run_nonuniform_flops(backend, with_backward=True)
for backend in non_uniform_backends
]
flops_fw_bw_math, flops_fw_bw_efficient = flops
self.assertExpectedInline(str(flops_fw_bw_math), """805306368""")
self.assertExpectedInline(str(flops_fw_bw_efficient), """939524096""")
@skipIfRocm # Nested tensor
@unittest.skipIf(not HAS_CUDA, "CUDA not available")
@unittest.skipIf(
not PLATFORM_SUPPORTS_FLASH_ATTENTION
or not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
"Does not support all SDPA backends (pre-SM80 hardware on CUDA)",
)
def test_sdpa_nested_tensor(self):
def get_flops(q, k, v, backend, with_backward=False):
mode = FlopCounterMode()
if backend == "math":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_math=True, enable_mem_efficient=False
)
elif backend == "flash":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=False, enable_mem_efficient=False
)
elif backend == "mem_efficient":
backend = torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_math=False, enable_mem_efficient=True
)
with backend, mode:
out = F.scaled_dot_product_attention(
q, k, v, dropout_p=0, is_causal=True
)
if with_backward:
if out.is_nested:
out.values().sum().backward()
else:
out.sum().backward()
return int(get_total_flops(mode))
def get_nested_inputs(
batch_size,
n_heads,
max_seq_len_q,
max_seq_len_k,
head_dim,
head_dim_v,
dtype,
):
q_lengths = torch.tensor(
[
max_seq_len_q // 4,
max_seq_len_q // 4 * 2,
max_seq_len_q // 4 * 3,
max_seq_len_q // 4 * 4,
]
)
k_lengths = torch.tensor(
[
max_seq_len_k // 4,
max_seq_len_k // 4 * 2,
max_seq_len_k // 4 * 3,
max_seq_len_k // 4 * 4,
]
)
q_offsets, k_offsets = (
torch.cat((torch.tensor([0]), torch.cumsum(lengths, dim=0))).cuda()
for lengths in (q_lengths, k_lengths)
)
q_values = torch.randn(
q_offsets[-1],
head_dim * n_heads,
dtype=dtype,
requires_grad=True,
device="cuda",
)
k_values = torch.randn(
k_offsets[-1],
head_dim * n_heads,
dtype=dtype,
requires_grad=True,
device="cuda",
)
v_values = torch.randn(
k_offsets[-1],
head_dim_v * n_heads,
dtype=dtype,
requires_grad=True,
device="cuda",
)
q = torch.nested.nested_tensor_from_jagged(q_values, q_offsets)
k = torch.nested.nested_tensor_from_jagged(k_values, k_offsets)
v = torch.nested.nested_tensor_from_jagged(v_values, k_offsets)
q = q.view(batch_size, -1, n_heads, head_dim).transpose(1, 2)
k = k.view(batch_size, -1, n_heads, head_dim).transpose(1, 2)
v = v.view(batch_size, -1, n_heads, head_dim_v).transpose(1, 2)
return q, k, v
def get_dense_flops(q, k, v, backend, with_backward=False):
def split_tensor(x):
return (
y.unsqueeze(0).transpose(1, 2).detach().requires_grad_(True)
for y in x.transpose(1, 2).unbind(0)
)
q_tensors = split_tensor(q)
k_tensors = split_tensor(k)
v_tensors = split_tensor(v)
flops = 0
for q_i, k_i, v_i in zip(q_tensors, k_tensors, v_tensors):
flops += get_flops(
q_i, k_i, v_i, backend=backend, with_backward=with_backward
)
return flops
uniform_config = {
"batch_size": 4,
"n_heads": 8,
"max_seq_len_q": 128,
"max_seq_len_k": 128,
"head_dim": 64,
"head_dim_v": 64,
"dtype": torch.float16,
}
# max_seq_len_q != max_seq_len_k doesn't work for flash attention with dense tensors.
differing_config = {
"batch_size": 4,
"n_heads": 8,
"max_seq_len_q": 128,
"max_seq_len_k": 256,
"head_dim": 64,
"head_dim_v": 64,
"dtype": torch.float16,
}
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**uniform_config),
backend="flash",
with_backward=False,
),
get_flops(
*get_nested_inputs(**uniform_config),
backend="flash",
with_backward=False,
),
)
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**uniform_config),
backend="mem_efficient",
with_backward=False,
),
get_flops(
*get_nested_inputs(**uniform_config),
backend="mem_efficient",
with_backward=False,
),
)
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**differing_config),
backend="mem_efficient",
with_backward=False,
),
get_flops(
*get_nested_inputs(**differing_config),
backend="mem_efficient",
with_backward=False,
),
)
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**uniform_config),
backend="flash",
with_backward=True,
),
get_flops(
*get_nested_inputs(**uniform_config),
backend="flash",
with_backward=True,
),
)
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**uniform_config),
backend="mem_efficient",
with_backward=True,
),
get_flops(
*get_nested_inputs(**uniform_config),
backend="mem_efficient",
with_backward=True,
),
)
self.assertEqual(
get_dense_flops(
*get_nested_inputs(**differing_config),
backend="mem_efficient",
with_backward=True,
),
get_flops(
*get_nested_inputs(**differing_config),
backend="mem_efficient",
with_backward=True,
),
)
def test_addmm_out(self):
def f(x):
y = torch.zeros(10, 10)
return torch.mm(x, x, out=y)
with FlopCounterMode() as mode:
f(torch.randn(10, 10))
self.assertExpectedInline(get_total_flops(mode), """2000""")
def test_hook_registration(self):
model = torch.nn.Linear(100, 100)
x = torch.randn(3, 100)
with FlopCounterMode() as mode:
self.assertEqual(len(torch.nn.modules.module._global_forward_pre_hooks), 1)
self.assertEqual(len(torch.nn.modules.module._global_forward_hooks), 1)
model(x).sum().backward()
self.assertEqual(len(torch.nn.modules.module._global_forward_pre_hooks), 0)
self.assertEqual(len(torch.nn.modules.module._global_forward_hooks), 0)
def test_pytrees(self):
class Foo(torch.nn.Module):
def forward(self, x):
x = x["a"].relu_()
return {"a": torch.mm(x, x)}
class Mod(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = Foo()
self.b = Foo()
def forward(self, x):
return self.b(self.a(x))
mod = Mod()
with FlopCounterMode() as mode:
mod({"a": torch.randn(10, 10, requires_grad=True).clone()})[
"a"
].sum().backward()
self.assertExpectedInline(
(mode.flop_counts["Mod"][torch.ops.aten.mm]), """12000"""
)
class Mod2(torch.nn.Module):
def forward(self, x):
return (torch.mm(x, x),)
mod = Mod2()
with FlopCounterMode() as mode:
mod(torch.randn(10, 10, requires_grad=True))[0].sum().backward()
self.assertExpectedInline(
(mode.flop_counts["Mod2"][torch.ops.aten.mm]), """6000"""
)
def test_warning(self):
mod = torch.nn.Linear(2, 2)
with self.assertWarnsRegex(UserWarning, "not needed"):
FlopCounterMode(mod)
if __name__ == "__main__":
run_tests()