blob: cd43392a6e1ca2c803755c3d07129b0668b328bb [file] [log] [blame]
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/error_report.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/schema_matching.h>
namespace torch {
namespace jit {
namespace script {
// first class mode runs models as first class objects,
// and does not force inlining everywhere. This is experimental
// as we bring up the system since it will degrade performance
// and may introduce bugs. test_jit.py provides context managers
// that enable it for specific tests.
thread_local bool inline_everything = true;
bool& getInlineEverythingMode() {
return inline_everything;
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) {
ExportModule(*this, out, extra_files);
}
void Module::save(
const std::string& filename,
const ExtraFilesMap& extra_files) {
ExportModule(*this, filename, extra_files);
}
void module_state_to(
const Slot& s,
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// Need to access the `at::Tensor` as a `Variable` here.
autograd::Variable variable = s.value().toTensor();
// Use the data's original device or dtype if not supplied here.
auto new_data = variable.to(
device.value_or(variable.device()),
dtype.value_or(variable.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
void Module::to_impl(
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// First call `to()` on every child module.
for (auto& child : get_modules()) {
child->to_impl(device, dtype, non_blocking);
}
// Then convert every of our parameters.
for (Slot parameter : get_parameters()) {
module_state_to(parameter, device, dtype, non_blocking);
}
// Then convert every tensor attributes (buffers).
for (Slot attr : get_attributes()) {
if (attr.type()->isSubtypeOf(TensorType::get())) {
module_state_to(attr, device, dtype, non_blocking);
}
}
}
// remove the first module argument, replacing any access of its
// parameters/attributes with extra_ivalue input Slots that hold what value to
// pass into the graph. Used for ONNX export to remove first-class modules
// so it can deal purely with parameters and inputs
std::pair<std::shared_ptr<Graph>, std::vector<Slot>> lower_graph(
const ModulePtr& self,
Graph& g_,
size_t self_offset = 0) {
std::shared_ptr<Graph> g = g_.copy();
std::vector<Slot> extra_ivalues;
std::unordered_map<Slot, size_t> slot_to_offset;
struct ToScan {
ModulePtr mod;
Node* n;
size_t offset;
};
std::vector<ToScan> to_scan;
std::vector<Node*> to_clean; // nodes that should be dead at the end
auto getOrAddSlot = [&](const Slot& slot) -> Value* {
auto it = slot_to_offset.find(slot);
if (it != slot_to_offset.end()) {
size_t ivalues_start = g->inputs().size() - extra_ivalues.size();
return g->inputs().at(ivalues_start + it->second);
}
extra_ivalues.emplace_back(slot);
slot_to_offset[slot] = extra_ivalues.size() - 1;
return g->addInput()->setType(slot.type());
};
auto self_value = g->inputs().at(self_offset);
for (Use use : self_value->uses()) {
to_scan.emplace_back(ToScan{self, use.user, use.offset});
}
while (to_scan.size() > 0) {
auto e = to_scan.back();
to_scan.pop_back();
// when we lambda lift forks, first-class modules may be passed across
// forks. This code recursively lowers the module in the fork call.
if (e.n->kind() == prim::fork) {
auto subgraph = e.n->g(attr::Subgraph);
std::vector<Slot> new_slots;
std::tie(subgraph, new_slots) = lower_graph(e.mod, *subgraph, e.offset);
e.n->g_(attr::Subgraph, subgraph);
for (const Slot& slot : new_slots) {
e.n->addInput(getOrAddSlot(slot));
}
e.n->removeInput(e.offset);
continue;
}
if (e.n->kind() != prim::GetAttr) {
throw ErrorReport(e.n->sourceRange())
<< "temporary: the only valid use of a module is looking up an "
"attribute but found "
<< *e.n;
}
Slot slot(e.mod, e.mod->type()->getAttributeSlot(e.n->s(attr::name)));
if (ClassTypePtr c = e.n->output()->type()->cast<ClassType>()) {
if (c->is_module()) {
auto obj = slot.value().toObject();
for (Use use : e.n->output()->uses()) {
to_scan.emplace_back(ToScan{obj, use.user, use.offset});
}
to_clean.emplace_back(e.n);
continue;
}
}
e.n->output()->replaceAllUsesWith(getOrAddSlot(slot));
e.n->destroy();
}
while (to_clean.size() > 0) {
Node* n = to_clean.back();
AT_ASSERT(!n->hasUses());
n->destroy();
to_clean.pop_back();
}
AT_ASSERT(!self_value->hasUses());
g->eraseInput(self_offset);
return std::make_pair(std::move(g), std::move(extra_ivalues));
}
Method::Method(ModulePtr owner, std::shared_ptr<Function> function)
: owner_(std::move(owner)), function_(std::move(function)) {}
Module Method::owner() const {
return Module(owner_);
}
void Method::run(Stack& stack) {
stack.insert(stack.begin(), owner().module_object());
function_->run(stack);
}
IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs) {
stack.insert(stack.begin(), owner().module_object());
return (*function_)(std::move(stack), kwargs);
}
static std::vector<at::Tensor> loadTensors(const std::vector<Slot>& slots) {
std::vector<at::Tensor> result;
result.reserve(slots.size());
for(const Slot& slot : slots) {
result.emplace_back(slot.value().toTensor());
}
return result;
}
std::pair<std::shared_ptr<Graph>, std::vector<at::Tensor>> Method::_lowered_graph() {
auto result = lower_graph(owner().module_object(), *graph());
return std::make_pair(result.first, loadTensors(result.second));
}
void Module::define(const std::string& src, const ResolverPtr& resolver) {
class_compilation_unit()->define(
src,
resolver ? resolver : script::nativeResolver(),
simpleSelf(module_object()->type()));
}
void Module::copy_into(
const ModuleLookup& module_lookup,
// translate current module singleton type to new module
// singleton type.
std::unordered_map<TypePtr, TypePtr>& type_remap,
std::vector<std::string> names) const {
auto curr = module_lookup(names);
type_remap[module_object()->type()] = curr->module_object()->type();
for (Slot s : curr->get_slots()) {
if (s.is_module()) {
names.push_back(s.name());
// Submodules must be translated first, otherwise parameter_remap entries
// will not be filled in for methods of this module.
s.to_module().copy_into(module_lookup, type_remap, names);
names.pop_back();
} else {
curr->set_or_add_slot(s.name(), s.type(), s.value(), s.entity_type());
}
}
for (auto& fn : class_compilation_unit()->get_functions()) {
curr->clone_method(*this, fn->name(), type_remap);
}
}
void Module::clone_method(
const Module& orig,
const std::string& name,
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
// type remapping - when we copy method implementations from one module
// singleton to another, we need to update the types of the self arguments
// to match the new module.
// XXX - this only handles modules that occur as variables, not modules
// that appear in aggregate types. Currently this works fine because
// we restrict how modules can be used during the lowering step. Eventually,
// we will need to decide what it means for us to 'copy' a module.
// For instance, we can copy just the state (parameters, attributes),
// but share the code. Or we can copy the code. If we choose to copy the
// code, what should we do about aggregate types that contain a module?
auto type_remap_fn = [&](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
const Function& fn = orig.class_compilation_unit()->get_function(name);
auto graph = fn.graph()->copy();
graph->remapTypes(type_remap_fn);
auto schema = fn.getSchema().cloneWithRemappedTypes(type_remap_fn);
auto copied = class_compilation_unit()->create_function(fn.name(), graph);
copied->setSchema(std::move(schema));
}
void Module::clone_method(const Module& orig, const std::string& name) {
std::unordered_map<TypePtr, TypePtr> type_remap;
std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}};
while (!to_scan.empty()) {
auto entry = to_scan.back();
to_scan.pop_back();
type_remap[entry.first.module_object()->type()] =
entry.second.module_object()->type();
for (Slot s : entry.first.get_module_slots()) {
to_scan.emplace_back(s.to_module(), *entry.second.get_module(s.name()));
}
}
return clone_method(orig, name, type_remap);
}
void Module::train(bool on) {
for (auto& submod : get_modules()) {
submod->train(on);
}
if (auto slot = find_attribute("training")) {
slot->setValue(on);
} else {
register_attribute("training", BoolType::get(), on);
}
}
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
// Look up the class
const auto classType =
class_compilation_unit()->get_class(c10::QualifiedName(name));
if (!classType) {
AT_ERROR(
"Could not find class with name: '",
name.qualifiedName(),
"' in module.");
}
// Create a bare object with correct number of slots
const size_t numAttrs = classType->numAttributes();
auto obj = c10::ivalue::Object::create(classType, numAttrs);
// Invoke the `__init__()` of the class with the arguments provided.
Stack stackWithSelf = {obj};
for (auto& arg : stack) {
stackWithSelf.push_back(std::move(arg));
}
// Note: following Python, `__init__()` modifies its first parameter in-place
// and returns nothing.
classType->getMethod("__init__")->operator()(std::move(stackWithSelf));
return obj;
}
slot_list Module::get_parameters() const {
return slot_list(*this, EntityType::PARAMETER);
}
slot_list Module::get_attributes() const {
return slot_list(*this, EntityType::ATTRIBUTE);
}
slot_list Module::get_module_slots() const {
return slot_list(*this, EntityType::MODULE);
}
slot_list Module::get_slots() const {
return slot_list(*this, c10::nullopt);
}
Module Slot::to_module() const {
return Module(value().toObject());
}
std::vector<std::shared_ptr<Module>> Module::get_modules() const {
std::vector<std::shared_ptr<Module>> result;
for (Slot s : get_slots()) {
if (s.is_module()) {
result.push_back(std::make_shared<Module>(s.to_module()));
}
}
return result;
}
} // namespace script
} // namespace jit
} // namespace torch