| #include <c10/util/Exception.h> |
| #include <torch/csrc/autograd/generated/variable_factories.h> |
| #include <torch/csrc/jit/export.h> |
| #include <torch/csrc/jit/operator.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/script/compiler.h> |
| #include <torch/csrc/jit/script/error_report.h> |
| #include <torch/csrc/jit/script/module.h> |
| #include <torch/csrc/jit/script/schema_matching.h> |
| |
| namespace torch { |
| namespace jit { |
| namespace script { |
| |
| // first class mode runs models as first class objects, |
| // and does not force inlining everywhere. This is experimental |
| // as we bring up the system since it will degrade performance |
| // and may introduce bugs. test_jit.py provides context managers |
| // that enable it for specific tests. |
| thread_local bool inline_everything = true; |
| bool& getInlineEverythingMode() { |
| return inline_everything; |
| } |
| |
| void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) { |
| to_impl(device, dtype, non_blocking); |
| } |
| |
| void Module::to(at::ScalarType dtype, bool non_blocking) { |
| to_impl(/*device=*/c10::nullopt, dtype, non_blocking); |
| } |
| |
| void Module::to(at::Device device, bool non_blocking) { |
| to_impl(device, /*dtype=*/c10::nullopt, non_blocking); |
| } |
| |
| void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) { |
| ExportModule(*this, out, extra_files); |
| } |
| |
| void Module::save( |
| const std::string& filename, |
| const ExtraFilesMap& extra_files) { |
| ExportModule(*this, filename, extra_files); |
| } |
| |
| void module_state_to( |
| const Slot& s, |
| const c10::optional<at::Device>& device, |
| const c10::optional<at::ScalarType>& dtype, |
| bool non_blocking) { |
| // Need to access the `at::Tensor` as a `Variable` here. |
| autograd::Variable variable = s.value().toTensor(); |
| // Use the data's original device or dtype if not supplied here. |
| auto new_data = variable.to( |
| device.value_or(variable.device()), |
| dtype.value_or(variable.scalar_type()), |
| non_blocking); |
| variable.set_data(new_data); |
| } |
| |
| void Module::to_impl( |
| const c10::optional<at::Device>& device, |
| const c10::optional<at::ScalarType>& dtype, |
| bool non_blocking) { |
| // First call `to()` on every child module. |
| for (auto& child : get_modules()) { |
| child->to_impl(device, dtype, non_blocking); |
| } |
| // Then convert every of our parameters. |
| for (Slot parameter : get_parameters()) { |
| module_state_to(parameter, device, dtype, non_blocking); |
| } |
| // Then convert every tensor attributes (buffers). |
| for (Slot attr : get_attributes()) { |
| if (attr.type()->isSubtypeOf(TensorType::get())) { |
| module_state_to(attr, device, dtype, non_blocking); |
| } |
| } |
| } |
| |
| // remove the first module argument, replacing any access of its |
| // parameters/attributes with extra_ivalue input Slots that hold what value to |
| // pass into the graph. Used for ONNX export to remove first-class modules |
| // so it can deal purely with parameters and inputs |
| std::pair<std::shared_ptr<Graph>, std::vector<Slot>> lower_graph( |
| const ModulePtr& self, |
| Graph& g_, |
| size_t self_offset = 0) { |
| std::shared_ptr<Graph> g = g_.copy(); |
| std::vector<Slot> extra_ivalues; |
| std::unordered_map<Slot, size_t> slot_to_offset; |
| struct ToScan { |
| ModulePtr mod; |
| Node* n; |
| size_t offset; |
| }; |
| std::vector<ToScan> to_scan; |
| std::vector<Node*> to_clean; // nodes that should be dead at the end |
| |
| auto getOrAddSlot = [&](const Slot& slot) -> Value* { |
| auto it = slot_to_offset.find(slot); |
| if (it != slot_to_offset.end()) { |
| size_t ivalues_start = g->inputs().size() - extra_ivalues.size(); |
| return g->inputs().at(ivalues_start + it->second); |
| } |
| extra_ivalues.emplace_back(slot); |
| slot_to_offset[slot] = extra_ivalues.size() - 1; |
| return g->addInput()->setType(slot.type()); |
| }; |
| |
| auto self_value = g->inputs().at(self_offset); |
| |
| for (Use use : self_value->uses()) { |
| to_scan.emplace_back(ToScan{self, use.user, use.offset}); |
| } |
| while (to_scan.size() > 0) { |
| auto e = to_scan.back(); |
| to_scan.pop_back(); |
| |
| // when we lambda lift forks, first-class modules may be passed across |
| // forks. This code recursively lowers the module in the fork call. |
| if (e.n->kind() == prim::fork) { |
| auto subgraph = e.n->g(attr::Subgraph); |
| std::vector<Slot> new_slots; |
| std::tie(subgraph, new_slots) = lower_graph(e.mod, *subgraph, e.offset); |
| e.n->g_(attr::Subgraph, subgraph); |
| for (const Slot& slot : new_slots) { |
| e.n->addInput(getOrAddSlot(slot)); |
| } |
| e.n->removeInput(e.offset); |
| continue; |
| } |
| if (e.n->kind() != prim::GetAttr) { |
| throw ErrorReport(e.n->sourceRange()) |
| << "temporary: the only valid use of a module is looking up an " |
| "attribute but found " |
| << *e.n; |
| } |
| Slot slot(e.mod, e.mod->type()->getAttributeSlot(e.n->s(attr::name))); |
| if (ClassTypePtr c = e.n->output()->type()->cast<ClassType>()) { |
| if (c->is_module()) { |
| auto obj = slot.value().toObject(); |
| for (Use use : e.n->output()->uses()) { |
| to_scan.emplace_back(ToScan{obj, use.user, use.offset}); |
| } |
| to_clean.emplace_back(e.n); |
| continue; |
| } |
| } |
| e.n->output()->replaceAllUsesWith(getOrAddSlot(slot)); |
| e.n->destroy(); |
| } |
| |
| while (to_clean.size() > 0) { |
| Node* n = to_clean.back(); |
| AT_ASSERT(!n->hasUses()); |
| n->destroy(); |
| to_clean.pop_back(); |
| } |
| AT_ASSERT(!self_value->hasUses()); |
| g->eraseInput(self_offset); |
| |
| return std::make_pair(std::move(g), std::move(extra_ivalues)); |
| } |
| |
| Method::Method(ModulePtr owner, std::shared_ptr<Function> function) |
| : owner_(std::move(owner)), function_(std::move(function)) {} |
| |
| Module Method::owner() const { |
| return Module(owner_); |
| } |
| void Method::run(Stack& stack) { |
| stack.insert(stack.begin(), owner().module_object()); |
| function_->run(stack); |
| } |
| |
| IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs) { |
| stack.insert(stack.begin(), owner().module_object()); |
| return (*function_)(std::move(stack), kwargs); |
| } |
| |
| static std::vector<at::Tensor> loadTensors(const std::vector<Slot>& slots) { |
| std::vector<at::Tensor> result; |
| result.reserve(slots.size()); |
| for(const Slot& slot : slots) { |
| result.emplace_back(slot.value().toTensor()); |
| } |
| return result; |
| } |
| std::pair<std::shared_ptr<Graph>, std::vector<at::Tensor>> Method::_lowered_graph() { |
| auto result = lower_graph(owner().module_object(), *graph()); |
| return std::make_pair(result.first, loadTensors(result.second)); |
| } |
| |
| void Module::define(const std::string& src, const ResolverPtr& resolver) { |
| class_compilation_unit()->define( |
| src, |
| resolver ? resolver : script::nativeResolver(), |
| simpleSelf(module_object()->type())); |
| } |
| |
| void Module::copy_into( |
| const ModuleLookup& module_lookup, |
| // translate current module singleton type to new module |
| // singleton type. |
| std::unordered_map<TypePtr, TypePtr>& type_remap, |
| std::vector<std::string> names) const { |
| auto curr = module_lookup(names); |
| type_remap[module_object()->type()] = curr->module_object()->type(); |
| |
| for (Slot s : curr->get_slots()) { |
| if (s.is_module()) { |
| names.push_back(s.name()); |
| // Submodules must be translated first, otherwise parameter_remap entries |
| // will not be filled in for methods of this module. |
| s.to_module().copy_into(module_lookup, type_remap, names); |
| names.pop_back(); |
| } else { |
| curr->set_or_add_slot(s.name(), s.type(), s.value(), s.entity_type()); |
| } |
| } |
| |
| for (auto& fn : class_compilation_unit()->get_functions()) { |
| curr->clone_method(*this, fn->name(), type_remap); |
| } |
| } |
| |
| void Module::clone_method( |
| const Module& orig, |
| const std::string& name, |
| const std::unordered_map<TypePtr, TypePtr>& type_remap) { |
| // type remapping - when we copy method implementations from one module |
| // singleton to another, we need to update the types of the self arguments |
| // to match the new module. |
| // XXX - this only handles modules that occur as variables, not modules |
| // that appear in aggregate types. Currently this works fine because |
| // we restrict how modules can be used during the lowering step. Eventually, |
| // we will need to decide what it means for us to 'copy' a module. |
| // For instance, we can copy just the state (parameters, attributes), |
| // but share the code. Or we can copy the code. If we choose to copy the |
| // code, what should we do about aggregate types that contain a module? |
| auto type_remap_fn = [&](TypePtr in) { |
| auto it = type_remap.find(in); |
| if (it == type_remap.end()) |
| return in; |
| return it->second; |
| }; |
| const Function& fn = orig.class_compilation_unit()->get_function(name); |
| auto graph = fn.graph()->copy(); |
| graph->remapTypes(type_remap_fn); |
| auto schema = fn.getSchema().cloneWithRemappedTypes(type_remap_fn); |
| auto copied = class_compilation_unit()->create_function(fn.name(), graph); |
| copied->setSchema(std::move(schema)); |
| } |
| |
| void Module::clone_method(const Module& orig, const std::string& name) { |
| std::unordered_map<TypePtr, TypePtr> type_remap; |
| std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}}; |
| while (!to_scan.empty()) { |
| auto entry = to_scan.back(); |
| to_scan.pop_back(); |
| type_remap[entry.first.module_object()->type()] = |
| entry.second.module_object()->type(); |
| for (Slot s : entry.first.get_module_slots()) { |
| to_scan.emplace_back(s.to_module(), *entry.second.get_module(s.name())); |
| } |
| } |
| return clone_method(orig, name, type_remap); |
| } |
| |
| void Module::train(bool on) { |
| for (auto& submod : get_modules()) { |
| submod->train(on); |
| } |
| if (auto slot = find_attribute("training")) { |
| slot->setValue(on); |
| } else { |
| register_attribute("training", BoolType::get(), on); |
| } |
| } |
| |
| IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const { |
| // Look up the class |
| const auto classType = |
| class_compilation_unit()->get_class(c10::QualifiedName(name)); |
| if (!classType) { |
| AT_ERROR( |
| "Could not find class with name: '", |
| name.qualifiedName(), |
| "' in module."); |
| } |
| |
| // Create a bare object with correct number of slots |
| const size_t numAttrs = classType->numAttributes(); |
| auto obj = c10::ivalue::Object::create(classType, numAttrs); |
| |
| // Invoke the `__init__()` of the class with the arguments provided. |
| Stack stackWithSelf = {obj}; |
| for (auto& arg : stack) { |
| stackWithSelf.push_back(std::move(arg)); |
| } |
| // Note: following Python, `__init__()` modifies its first parameter in-place |
| // and returns nothing. |
| classType->getMethod("__init__")->operator()(std::move(stackWithSelf)); |
| |
| return obj; |
| } |
| |
| slot_list Module::get_parameters() const { |
| return slot_list(*this, EntityType::PARAMETER); |
| } |
| |
| slot_list Module::get_attributes() const { |
| return slot_list(*this, EntityType::ATTRIBUTE); |
| } |
| |
| slot_list Module::get_module_slots() const { |
| return slot_list(*this, EntityType::MODULE); |
| } |
| |
| slot_list Module::get_slots() const { |
| return slot_list(*this, c10::nullopt); |
| } |
| |
| Module Slot::to_module() const { |
| return Module(value().toObject()); |
| } |
| |
| std::vector<std::shared_ptr<Module>> Module::get_modules() const { |
| std::vector<std::shared_ptr<Module>> result; |
| for (Slot s : get_slots()) { |
| if (s.is_module()) { |
| result.push_back(std::make_shared<Module>(s.to_module())); |
| } |
| } |
| return result; |
| } |
| |
| } // namespace script |
| } // namespace jit |
| } // namespace torch |