blob: 671597480e83376314a9fb122699e3bf481dc51b [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/csrc/deploy/deploy.h>
#include <torch/script.h>
#include <torch/torch.h>
#include <future>
#include <iostream>
#include <string>
int main(int argc, char* argv[]) {
::testing::InitGoogleTest(&argc, argv);
int rc = RUN_ALL_TESTS();
return rc;
}
void compare_torchpy_jit(const char* model_filename, const char* jit_filename) {
// Test
torch::deploy::InterpreterManager m(1);
torch::deploy::Package p = m.load_package(model_filename);
auto model = p.load_pickle("model", "model.pkl");
at::IValue eg;
{
auto I = p.acquire_session();
eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
}
at::Tensor output = model(eg.toTuple()->elements()).toTensor();
// Reference
auto ref_model = torch::jit::load(jit_filename);
at::Tensor ref_output =
ref_model.forward(eg.toTuple()->elements()).toTensor();
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
}
const char* simple = "torch/csrc/deploy/example/generated/simple";
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
const char* path(const char* envname, const char* path) {
const char* e = getenv(envname);
return e ? e : path;
}
TEST(TorchpyTest, SimpleModel) {
compare_torchpy_jit(path("SIMPLE", simple), path("SIMPLE_JIT", simple_jit));
}
TEST(TorchpyTest, ResNet) {
compare_torchpy_jit(
path("RESNET", "torch/csrc/deploy/example/generated/resnet"),
path("RESNET_JIT", "torch/csrc/deploy/example/generated/resnet_jit"));
}
TEST(TorchpyTest, Movable) {
torch::deploy::InterpreterManager m(1);
torch::deploy::ReplicatedObj obj;
{
auto I = m.acquire_one();
auto model =
I.global("torch.nn", "Module")(std::vector<torch::deploy::Obj>());
obj = I.create_movable(model);
}
obj.acquire_session();
}
TEST(TorchpyTest, MultiSerialSimpleModel) {
torch::deploy::InterpreterManager manager(3);
torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
auto model = p.load_pickle("model", "model.pkl");
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto input = torch::ones({10, 20});
size_t ninterp = 3;
std::vector<at::Tensor> outputs;
for (size_t i = 0; i < ninterp; i++) {
outputs.push_back(model({input}).toTensor());
}
// Generate reference
auto ref_output = ref_model.forward({input}).toTensor();
// Compare all to reference
for (size_t i = 0; i < ninterp; i++) {
ASSERT_TRUE(ref_output.equal(outputs[i]));
}
}
TEST(TorchpyTest, ThreadedSimpleModel) {
size_t nthreads = 3;
torch::deploy::InterpreterManager manager(nthreads);
torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
auto model = p.load_pickle("model", "model.pkl");
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto input = torch::ones({10, 20});
std::vector<at::Tensor> outputs;
std::vector<std::future<at::Tensor>> futures;
for (size_t i = 0; i < nthreads; i++) {
futures.push_back(std::async(std::launch::async, [&model]() {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto input = torch::ones({10, 20});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
for (int i = 0; i < 100; ++i) {
model({input}).toTensor();
}
auto result = model({input}).toTensor();
return result;
}));
}
for (size_t i = 0; i < nthreads; i++) {
outputs.push_back(futures[i].get());
}
// Generate reference
auto ref_output = ref_model.forward({input}).toTensor();
// Compare all to reference
for (size_t i = 0; i < nthreads; i++) {
ASSERT_TRUE(ref_output.equal(outputs[i]));
}
}