| #!/usr/bin/env python3 |
| from typing import Any, TypeVar, Optional, Tuple, List, NamedTuple, Union, Sequence, Dict, Callable |
| import textwrap |
| import torch |
| from torch._C import TupleType, ListType |
| |
| |
| T = TypeVar("T") |
| |
| MAX_RAW_TENSOR_SIZE = 16 |
| |
| class InflatableArg(NamedTuple): |
| value: Any |
| fmt: str |
| |
| |
| def augment_model_with_bundled_inputs( |
| model: torch.jit.ScriptModule, |
| inputs: Optional[Sequence[Tuple[Any, ...]]] = None, |
| _receive_inflate_expr: Optional[List[str]] = None, # For debugging. |
| info: Optional[List[str]] = None, # Optional argument to provide info about forward or its inputs |
| ) -> None: |
| """ Wrapper around augment_many_model_functions_with_bundled_inputs to provide a streamlined api for forward |
| which is the only function the vast majority of models need bundled inputs for. |
| """ |
| |
| if not isinstance(model, torch.jit.ScriptModule): |
| raise Exception("Only ScriptModule is supported.") |
| |
| forward: Callable = model.forward |
| |
| # Sometimes forward won't have a name attached so just in case |
| if not hasattr(forward, "__name__"): |
| forward.__name__ = 'forward' |
| augment_many_model_functions_with_bundled_inputs( |
| model, |
| inputs={forward : inputs}, |
| _receive_inflate_expr=_receive_inflate_expr, |
| info={forward : info} if info else None, |
| ) |
| |
| |
| def augment_many_model_functions_with_bundled_inputs( |
| model: torch.jit.ScriptModule, |
| inputs: Dict[Callable, Optional[Sequence[Tuple[Any, ...]]]], |
| _receive_inflate_expr: Optional[List[str]] = None, # For debugging. |
| info: Optional[Dict[Callable, List[str]]] = None, # Optional argument to provide info about the function or its inputs |
| ) -> None: |
| """Add bundled sample inputs to a model for an arbitrary list of public functions. |
| |
| Models with bundled inputs can be invoked in a uniform manner by |
| benchmarking and code coverage tools. |
| |
| Augmented models will support the following methods: |
| |
| `get_all_bundled_inputs_for_<function_name>() -> List[Tuple[Any, ...]]` |
| Returns a list of tuples suitable for passing to the model like |
| `for inp in model.get_all_bundled_inputs_for_foo(): model.foo(*inp)` |
| |
| `get_bundled_inputs_functions_and_info() -> Dict[str, Dict[str: List[str]]]` |
| Returns a dictionary mapping function names to a metadata dictionary. |
| This nested dictionary maps preset strings like: |
| 'get_inputs_function_name' -> the name of a function attribute in this model that can be |
| run to get back a list of inputs corresponding to that function. |
| 'info' -> the user provided extra information about the bundled inputs |
| |
| If forward has bundled inputs then these following functions are also defined: |
| |
| `get_all_bundled_inputs() -> List[Tuple[Any, ...]]` |
| Returns a list of tuples suitable for passing to the model like |
| `for inp in model.get_all_bundled_inputs(): model(*inp)` |
| |
| `get_num_bundled_inputs() -> int` |
| Equivalent to `len(model.get_all_bundled_inputs())`, |
| but slightly easier to call from C++. |
| |
| `run_on_bundled_input(idx: int) -> Any` |
| Run the model on bundled input number `idx` |
| |
| Inputs can be specified in one of two ways: |
| |
| - The model can define `_generate_bundled_inputs_for_<function_name>` |
| get_all_bundled_inputs will simply call this method |
| and cache the value. If the user chooses this method inputs[<function>] |
| should map to None |
| - The `inputs` argument to this function can be a dictionary mapping functions to a |
| list of inputs, of the same form that will be returned by get_all_bundled_inputs_for_<function_name>. |
| The type of the inputs is List[Tuple[Any, ...]]. The outer list corresponds with a |
| list of inputs, the inner tuple is the list of args that together make up one input. |
| For inputs of functions that take one arg, this will be a tuple of length one. The Any, ... |
| is the actual data that makes up the args, e.g. a tensor. |
| |
| Info is an optional parameter that maps functions to a list of strings providing extra information about that |
| function's bundled inputs. This could be descriptions, expected outputs, etc. |
| - Ex: info={model.forward : ['man eating icecream', 'an airplane', 'a dog']} |
| |
| This function will attempt to optimize arguments so that (e.g.) |
| arguments like `torch.zeros(1000)` will be represented compactly. |
| Only top-level arguments will be optimized. |
| Tensors in lists or tuples will not. |
| """ |
| if not isinstance(model, torch.jit.ScriptModule): |
| raise Exception("Only ScriptModule is supported.") |
| |
| if not inputs: |
| raise Exception("Please provide inputs for at least 1 function") |
| |
| get_bundled_inputs_functions_and_info_template = "" |
| |
| for function, input_list in inputs.items(): |
| function_name = function.__name__ |
| |
| if input_list is not None and not isinstance(input_list, Sequence): |
| raise TypeError("Error inputs for function {0} is not a Sequence".format(function_name)) |
| |
| function_arg_types = [arg.type for arg in function.schema.arguments[1:]] # type: ignore |
| deflated_inputs_type: ListType = ListType(TupleType(function_arg_types)) |
| model._c._register_attribute("_bundled_inputs_deflated_{name}".format(name=function_name), deflated_inputs_type, []) |
| |
| if hasattr(model, "_generate_bundled_inputs_for_" + function_name): |
| if input_list is not None: |
| raise Exception( |
| "inputs[{name}] is not None, but _generate_bundled_inputs_for_{name} is already defined".format( |
| name=function_name |
| ) |
| ) |
| # Model author already defined _generate_bundled_inputs_for_<function_name>. |
| elif input_list is None or len(input_list) == 0: |
| raise Exception( |
| "inputs for {name} must be specified if _generate_bundled_inputs_for_{name} is not already defined".format( |
| name=function_name, |
| ) |
| ) |
| else: |
| # Iterate over the inputs and args in each input. |
| # Accumulate `deflated_inputs` as (possibly) compressed values |
| # and `parts` to be joined into the expression that unpacks them. |
| deflated_inputs = [] |
| parts = [] |
| for inp_idx, args in enumerate(input_list): |
| if not isinstance(args, Tuple) and not isinstance(args, List): # type: ignore |
| raise TypeError( |
| "Error bundled input for function {0} idx: {1} is not a Tuple or a List".format(function_name, inp_idx) |
| ) |
| deflated_args = [] |
| parts.append("(") |
| for arg_idx, arg in enumerate(args): |
| deflated, inflater = _inflate_expr(arg, f"deflated[{inp_idx}][{arg_idx}]") |
| deflated_args.append(deflated) |
| parts.append(f" {inflater},") |
| deflated_inputs.append(tuple(deflated_args)) |
| parts.append("),") |
| parts.append("") |
| expr = "\n".join(parts) |
| # Back-channel return this expr for debugging. |
| if _receive_inflate_expr is not None: |
| _receive_inflate_expr.append(expr) |
| setattr(model, "_bundled_inputs_deflated_{name}".format(name=function_name), deflated_inputs) |
| definition = textwrap.dedent(""" |
| def _generate_bundled_inputs_for_{name}(self): |
| deflated = self._bundled_inputs_deflated_{name} |
| return [ |
| {expr} |
| ] |
| """).format(expr=expr, name=function_name) |
| model.define(definition) |
| |
| # Define get_all_bundled_inputs_for_<function_name> that caches the generated inputs. |
| model.define(textwrap.dedent(""" |
| def get_all_bundled_inputs_for_{name}(self): |
| all_inputs = self._generate_bundled_inputs_for_{name}() |
| assert all_inputs is not None |
| return all_inputs |
| """).format(name=function_name)) |
| |
| # Add to the high level helper methods |
| inputs_info = repr(info[function]) if info and function in info else '[]' |
| get_bundled_inputs_functions_and_info_template += """ |
| temp_dict : Dict[str,List[str]] = {{}} |
| info: List[str] = {info} |
| |
| temp_dict['info'] = info |
| temp_dict['get_inputs_function_name'] = ['get_all_bundled_inputs_for_{name}'] |
| all_inputs['{name}'] = temp_dict |
| """.format( |
| name=function_name, |
| info=inputs_info, |
| ) |
| |
| # To ensure backwards compatibility and a streamlined api for forward these wrappers are provided |
| if function_name == 'forward': |
| model.define(textwrap.dedent(""" |
| def get_all_bundled_inputs(self): |
| return self.get_all_bundled_inputs_for_forward() |
| """)) |
| model.define(textwrap.dedent(""" |
| def get_num_bundled_inputs(self): |
| return len(self.get_all_bundled_inputs_for_forward()) |
| """)) |
| model.define(textwrap.dedent(""" |
| def run_on_bundled_input(self, idx: int): |
| return self(*self.get_all_bundled_inputs()[idx]) |
| """)) |
| |
| |
| # Define some high level helper methods that act on all bundled inputs |
| model.define(textwrap.dedent(""" |
| def get_bundled_inputs_functions_and_info(self): |
| all_inputs : Dict[str, Dict[str,List[str]]] = {{}} |
| {template} |
| return all_inputs |
| """.format(template=get_bundled_inputs_functions_and_info_template))) |
| |
| def _inflate_expr(arg: T, ref: str) -> Tuple[Union[T, torch.Tensor], str]: |
| # Allow custom inflation expressions any object. |
| # For example, calling custom image-decoding ops. |
| # Or just use "{}" as the format string to ignore size limits. |
| if isinstance(arg, InflatableArg): |
| return arg.value, arg.fmt.format(ref) |
| |
| if isinstance(arg, torch.Tensor): |
| # Small-storage tensors can just be saved directly. |
| if arg.storage().size() <= MAX_RAW_TENSOR_SIZE: |
| return arg, ref |
| # Small contiguous tensors can be cloned to have small storage. |
| # TODO: Should we do this even for non-contiguous tensors? |
| if arg.is_contiguous() and arg.numel() <= MAX_RAW_TENSOR_SIZE: |
| return arg.clone(), ref |
| # Example inputs commonly come from torch.zeros, torch.ones, or torch.full. |
| # These can be represented compactly. |
| for fmt in [torch.contiguous_format, torch.channels_last]: |
| if arg.is_contiguous(memory_format=fmt) and (arg == arg.flatten()[0]).all().item(): |
| return (arg.flatten()[0].clone().expand(*arg.size()), |
| f"{ref}.contiguous(memory_format={fmt})") |
| # Prevent big tensors from being bundled by default. |
| # TODO: Provide more useful diagnostics. |
| raise Exception( |
| f"Bundled input argument at position '{ref}' is " |
| f"a tensor with storage size {arg.storage().size()}. " |
| f"You probably don't want to bundle this as an input. " |
| ) |
| else: |
| return arg, ref |
| |
| |
| def bundle_randn(*size, dtype=None): |
| """Generate a tensor that will be inflated with torch.randn.""" |
| stub = torch.zeros(1, dtype=dtype).expand(*size) |
| return InflatableArg(value=stub, fmt="torch.randn_like({})") |
| |
| |
| def bundle_large_tensor(t): |
| """Wrap a tensor to allow bundling regardless of size.""" |
| return InflatableArg(value=t, fmt="{}") |