| # mypy: allow-untyped-defs |
| import inspect |
| import math |
| import operator |
| from collections.abc import Iterable |
| from typing import Any, Dict, final, List, Optional, Tuple, Type |
| |
| import torch |
| from torch._ops import HigherOrderOperator, OpOverload |
| from torch._subclasses.fake_tensor import FakeTensor |
| from torch.export.exported_program import ExportedProgram |
| from torch.export.graph_signature import ( |
| CustomObjArgument, |
| InputKind, |
| SymIntArgument, |
| TensorArgument, |
| TokenArgument, |
| ) |
| from torch.fx import GraphModule |
| from torch.fx.experimental.symbolic_shapes import SymBool, SymFloat, SymInt |
| |
| |
| class SpecViolationError(Exception): |
| pass |
| |
| |
| def is_functional(op: OpOverload) -> bool: |
| return not op._schema.is_mutable |
| |
| |
| def _check_has_fake_tensor(node: torch.fx.Node) -> None: |
| # TODO(angelayi): remove this in favor of _check_val |
| return _check_val(node) |
| |
| |
| def _check_val(node: torch.fx.Node) -> None: |
| def _check_correct_val(val): |
| if val is None: |
| return True |
| elif isinstance(val, (int, bool, str, float)): |
| return True |
| elif isinstance(val, (torch.memory_format, torch.dtype, torch.device, torch.layout)): |
| return True |
| elif isinstance(val, (FakeTensor, torch.Tensor)): # TODO(zhxchen17) Remove Tensor. |
| return True |
| elif isinstance(val, (SymInt, SymFloat, SymBool)): |
| return True |
| elif isinstance(val, CustomObjArgument): |
| return True |
| elif isinstance(val, Iterable): |
| return all(_check_correct_val(x) for x in val) |
| return False |
| |
| def _no_returns(op): |
| if not isinstance(op, OpOverload): |
| return False |
| return len(op._schema.returns) == 0 |
| |
| if "val" not in node.meta: |
| if node.op == "call_function" and _no_returns(node.target): |
| return |
| raise SpecViolationError(f"Node.meta {node.name} is missing val field.") |
| |
| val = node.meta["val"] |
| if not _check_correct_val(val): |
| raise SpecViolationError(f"Node.meta {node.name} has invalid val field {val}") |
| |
| |
| def _check_torch_fn(node: torch.fx.Node) -> None: |
| torch_fn = node.meta.get("torch_fn") |
| if torch_fn is None: |
| raise SpecViolationError(f"Unable to find torch_fn metadata for node {node.name}") |
| if ( |
| not isinstance(torch_fn, tuple) and |
| isinstance(torch_fn[0], str) and |
| isinstance(torch_fn[1], str) |
| ): |
| raise SpecViolationError(f"Node.meta {node.name} has invalid torch_fn field {torch_fn}") |
| |
| class _VerifierMeta(type): |
| _registry: Dict[str, Type['Verifier']] = {} |
| |
| def __new__(metacls, name, bases, attrs): |
| if bases: |
| if "check" in attrs or "_check_graph_module" in attrs: |
| raise SyntaxError("Overriding method check is not allowed.") |
| assert "dialect" in attrs and attrs["dialect"] != "ATEN" |
| else: |
| assert "check" in attrs |
| assert "_check_graph_module" in attrs |
| assert attrs["dialect"] == "ATEN" |
| |
| assert isinstance(attrs["dialect"], str) |
| ret = type.__new__(metacls, name, bases, attrs) |
| metacls._registry[attrs["dialect"]] = ret # type: ignore[assignment] |
| return ret |
| |
| def getattr_recursive(obj: Any, target: str) -> Any: |
| target_atoms = target.split('.') |
| attr_itr = obj |
| for i, atom in enumerate(target_atoms): |
| if not hasattr(attr_itr, atom): |
| raise RuntimeError(f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}") |
| attr_itr = getattr(attr_itr, atom) |
| return attr_itr |
| |
| |
| class Verifier(metaclass=_VerifierMeta): |
| dialect = "ATEN" |
| |
| def allowed_builtin_ops(self) -> List: |
| return [ |
| operator.getitem, |
| operator.add, |
| operator.mul, |
| operator.sub, |
| operator.truediv, |
| operator.ge, |
| operator.le, |
| operator.gt, |
| operator.lt, |
| operator.eq, |
| operator.ne, |
| operator.floordiv, |
| operator.mod, |
| operator.and_, |
| operator.or_, |
| operator.not_, |
| operator.pow, |
| operator.neg, |
| operator.abs, |
| math.ceil, |
| math.floor, |
| ] |
| |
| def allowed_op_types(self) -> Tuple[Type[Any], ...]: |
| from torch._export.serde.serialize import allowed_registered_op_types # Avoid circular import. |
| return (OpOverload, HigherOrderOperator, *allowed_registered_op_types()) |
| |
| def allowed_getattr_types(self) -> Tuple[Type[Any], ...]: |
| return (torch.fx.GraphModule,) |
| |
| def check_valid_op(self, op): |
| pass |
| |
| def check_additional(self, gm: GraphModule) -> None: |
| """ |
| Additional checks that are specific to some dialects. |
| """ |
| pass |
| |
| @final |
| def check(self, ep: ExportedProgram) -> None: |
| self._check_graph_module(ep.graph_module) |
| _verify_exported_program_signature(ep) |
| |
| @final |
| def _check_graph_module(self, gm: torch.fx.GraphModule) -> None: |
| def _allowed_getattr_types() -> Tuple[Type[Any], ...]: |
| ret = self.allowed_getattr_types() |
| assert not any(t is object for t in ret) |
| return ret |
| |
| def _check_valid_op(op) -> None: |
| def _allowed_builtin_ops() -> List: |
| ret = self.allowed_builtin_ops() |
| assert all(inspect.isbuiltin(op) for op in ret) |
| return ret |
| |
| def _allowed_op_types() -> Tuple[Type[Any], ...]: |
| ret = self.allowed_op_types() |
| assert not any(t is object for t in ret) |
| return ret |
| |
| # TODO Remove this allowlist. |
| _allowed_torch_functions = ( |
| torch.autograd.grad_mode.set_grad_enabled, |
| torch.sym_int, |
| torch.sym_ite, |
| torch.sym_max, |
| torch.sym_min, |
| torch.sym_not, |
| torch.sym_sqrt, |
| # TODO (tmanlaibaatar) |
| # Predispatch export is able to contain autograd ops. |
| # These will be modeled as HOO later |
| torch._C._set_grad_enabled, |
| ) |
| |
| if not isinstance(op, _allowed_op_types()): |
| if op not in _allowed_builtin_ops() and op not in _allowed_torch_functions: |
| raise SpecViolationError( |
| f"Operator '{op}' is not an allowed operator type: {_allowed_op_types()}\n" |
| f"Valid builtin ops: {_allowed_builtin_ops()}" |
| f"Valid torch functions: {_allowed_torch_functions}" |
| ) |
| |
| if isinstance(op, OpOverload): |
| # All ops functional |
| if not is_functional(op): |
| raise SpecViolationError( |
| f"operator '{op}' is not functional" |
| ) |
| self.check_valid_op(op) |
| |
| for mod in gm.modules(): |
| if not isinstance(mod, torch.fx.GraphModule): |
| continue |
| |
| mod.graph.lint() |
| for node in mod.graph.nodes: |
| # TODO(T140410192): should have fake tensor for all dialects |
| if node.op in {"call_module", "call_method"}: |
| raise SpecViolationError( |
| f"call_module is not valid: got a class '{node.target}' ", |
| ) |
| |
| elif node.op == "call_function": |
| _check_val(node) |
| |
| _check_valid_op(node.target) |
| |
| elif node.op == "get_attr": |
| if not isinstance(node.target, str): |
| raise SpecViolationError( |
| f"Expected get_attr target to be string, but got {type(node.target)}" |
| ) |
| |
| attr = getattr_recursive(mod, node.target) |
| if isinstance(attr, torch.nn.Module): |
| def _is_type(name, ty): |
| return isinstance(getattr(attr, name, None), ty) |
| if type(attr).__name__ == "LoweredBackendModule": |
| if _is_type("backend_id", str) \ |
| and _is_type("processed_bytes", bytes) \ |
| and _is_type("compile_specs", list) \ |
| and hasattr(attr, "original_module"): |
| continue |
| else: |
| backend_id = getattr(attr, "backend_id", None) |
| processed_bytes = getattr(attr, "processed_bytes", None) |
| compile_specs = getattr(attr, "compile_specs", None) |
| raise SpecViolationError( |
| f"Invalid get_attr type {type(attr)}. \n" |
| f"LoweredBackendModule fields: " |
| f"backend_id(str) : {type(backend_id)}, " |
| f"processed_bytes(bytes) : {type(processed_bytes)}, " |
| f"compile_specs(list) : {type(compile_specs)}" |
| ) |
| |
| if not isinstance(attr, _allowed_getattr_types()): |
| raise SpecViolationError( |
| f"Invalid get_attr type {type(attr)}. \n" |
| f"Valid get_attr types: {_allowed_getattr_types()}" |
| ) |
| |
| |
| elif node.op == "placeholder": |
| _check_val(node) |
| # TODO(zhxchen17) |
| # elif node.op == "output": |
| # _check_flattened_outputs() |
| |
| self.check_additional(gm) |
| |
| |
| def _verify_exported_program_signature(exported_program) -> None: |
| # Check ExportedProgram signature matches |
| gs = exported_program.graph_signature |
| |
| # Check every node in the signature exists in the graph |
| input_node_names = [node.name for node in exported_program.graph.nodes if node.op == "placeholder"] |
| |
| if len(input_node_names) != len(gs.input_specs): |
| raise SpecViolationError( |
| f"Number of graph inputs ({len(input_node_names)}) " |
| f"does not match number of inputs in the graph signature ({len(gs.user_inputs)})" |
| ) |
| |
| for input_spec, node in zip(gs.input_specs, input_node_names): |
| if isinstance(input_spec.arg, (TensorArgument, SymIntArgument)): |
| if input_spec.arg.name != node: |
| raise SpecViolationError( |
| f"Input spec name {input_spec.arg.name} does not match node name {node}" |
| ) |
| |
| if input_spec.kind == InputKind.USER_INPUT: |
| continue |
| |
| elif input_spec.kind == InputKind.PARAMETER: |
| if not isinstance(input_spec.arg, TensorArgument): |
| raise SpecViolationError( |
| f"Parameter {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
| ) |
| if input_spec.target is None: |
| raise SpecViolationError( |
| f"InputSpec for {input_spec.name} has no target." |
| ) |
| |
| param = input_spec.target |
| if param not in exported_program.state_dict: |
| raise SpecViolationError( |
| f"Parameter {param} is not in the state dict." |
| ) |
| |
| if not isinstance(exported_program.state_dict[param], torch.nn.Parameter): |
| raise SpecViolationError( |
| f"State dict entry for parameter {param} is not an instance of torch.nn.Parameter." |
| ) |
| |
| elif input_spec.kind == InputKind.BUFFER: |
| if not isinstance(input_spec.arg, TensorArgument): |
| raise SpecViolationError( |
| f"Buffer {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
| ) |
| if input_spec.target is None: |
| raise SpecViolationError( |
| f"InputSpec for {input_spec.name} has no target." |
| ) |
| |
| buffer = input_spec.target |
| if input_spec.persistent is None: |
| raise SpecViolationError( |
| f"Buffer {buffer} is missing a persistence flag" |
| ) |
| |
| if input_spec.persistent is True and buffer not in exported_program.state_dict: |
| raise SpecViolationError( |
| f"Buffer {buffer} is not in the state dict." |
| ) |
| |
| if input_spec.persistent is False and buffer in exported_program.state_dict: |
| raise SpecViolationError( |
| f"Non-persistent buffer {buffer} is in the state dict, it should not be." |
| ) |
| elif input_spec.kind == InputKind.CONSTANT_TENSOR: |
| if not isinstance(input_spec.arg, TensorArgument): |
| raise SpecViolationError( |
| f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
| ) |
| if input_spec.target is None: |
| raise SpecViolationError( |
| f"InputSpec for {input_spec.name} has no target." |
| ) |
| |
| tensor_const = input_spec.target |
| if tensor_const not in exported_program.constants: |
| raise SpecViolationError( |
| f"Constant tensor {tensor_const} is not in the constants dictionary." |
| ) |
| elif input_spec.kind == InputKind.CUSTOM_OBJ: |
| if not isinstance(input_spec.arg, CustomObjArgument): |
| raise SpecViolationError( |
| f"Custom object {input_spec.name} is not a custom object argument. Found {input_spec.arg} instead." |
| ) |
| if input_spec.target is None: |
| raise SpecViolationError( |
| f"InputSpec for {input_spec.name} has no target." |
| ) |
| |
| custom_obj = input_spec.target |
| if custom_obj not in exported_program.constants: |
| raise SpecViolationError( |
| f"Custom object {custom_obj} is not in the constants dictionary." |
| ) |
| elif input_spec.kind == InputKind.TOKEN: |
| if not isinstance(input_spec.arg, TokenArgument): |
| raise SpecViolationError( |
| f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead." |
| ) |
| else: |
| raise SpecViolationError( |
| f"Unknown InputKind {input_spec.kind}." |
| ) |
| |
| # Check outputs |
| output_node = list(exported_program.graph.nodes)[-1] |
| assert output_node.op == "output" |
| output_nodes = [ |
| arg.name if isinstance(arg, torch.fx.Node) else arg |
| for arg in output_node.args[0] |
| ] |
| |
| if len(output_nodes) != len(gs.output_specs): |
| raise SpecViolationError( |
| f"Number of output nodes {len(output_nodes)} is different " |
| "Than the number of outputs specified by the graph signature: \n" |
| f"Number of mutated buffers: {len(gs.buffers_to_mutate)}. \n" |
| f"Number of user outputs: {len(gs.user_outputs)}. \n" |
| ) |
| |
| num_tokens = len(gs.output_tokens) |
| end = len(gs.buffers_to_mutate) + len(gs.user_inputs_to_mutate) + num_tokens |
| mutate_nodes: List[str] = output_nodes[num_tokens:end] |
| user_output_nodes = output_nodes[end:end + len(gs.user_outputs)] |
| |
| for mutation_node in mutate_nodes: |
| if mutation_node in gs.buffers_to_mutate: |
| if gs.buffers_to_mutate[mutation_node] not in gs.buffers: |
| raise SpecViolationError( |
| f"Buffer output {mutation_node} does not point to a buffer that exists. \n" |
| f"Dict of buffers that are mutated, in order: {gs.buffers_to_mutate} \n" |
| f"Buffer nodes available: {gs.buffers} \n" |
| ) |
| elif mutation_node in gs.user_inputs_to_mutate: |
| if gs.user_inputs_to_mutate[mutation_node] not in gs.user_inputs: |
| raise SpecViolationError( |
| f"User input output {mutation_node} does not point to a user input that exists. \n" |
| f"Dict of user inputs that are mutated, in order: {gs.user_inputs_to_mutate} \n" |
| f"User input nodes available: {gs.user_inputs} \n") |
| else: |
| raise SpecViolationError( |
| f"Mutation node {mutation_node} is neither a buffer nor a user input. " |
| f"Buffers to mutate: {gs.buffers_to_mutate}, User inputs to mutate: {gs.user_inputs_to_mutate}" |
| ) |
| |
| for user_output_node, user_output_name in zip(user_output_nodes, gs.user_outputs): |
| if user_output_node != user_output_name: |
| raise SpecViolationError( |
| f"User output {user_output_node} is not in the correct " |
| "order or is not found in the " |
| f"exported program's user_output list: {gs.user_outputs}. " |
| ) |
| |
| |
| def load_verifier(dialect: str) -> Optional[Type[Verifier]]: |
| if dialect == "ATEN" or dialect == "": |
| return _VerifierMeta._registry.get(dialect) |
| return _VerifierMeta._registry[dialect] |