| # @package optimizer |
| # Module caffe2.python.optimizer |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| |
| from caffe2.python import core |
| |
| |
| class Regularizer(object): |
| def __init__(self): |
| pass |
| |
| ''' |
| Adds regularization to train_net for given parameter. Its factor ahead of |
| regularization is given when initialization. |
| The param should be a BlobReference. |
| ''' |
| |
| def __call__(self, train_net, param): |
| assert isinstance(param, core.BlobReference) |
| return self._run(train_net, param) |
| |
| def _run(self, train_net, param): |
| raise Exception("Not Impelemented") |
| |
| |
| class L1Norm(Regularizer): |
| def __init__(self, reg_lambda): |
| super(L1Norm, self).__init__() |
| assert reg_lambda >= 0,\ |
| 'factor ahead of regularization should be 0 or positive' |
| |
| self.reg_lambda = reg_lambda |
| |
| def _run(self, train_net, param): |
| output_blob = train_net.NextScopedBlob(param + '_l1_regularization') |
| train_net.LpNorm([param], [output_blob], p=1) |
| train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda) |
| return output_blob |
| |
| |
| class L2Norm(Regularizer): |
| def __init__(self, reg_lambda): |
| super(L2Norm, self).__init__() |
| assert reg_lambda >= 0,\ |
| 'factor ahead of regularization should be 0 or positive' |
| |
| self.reg_lambda = reg_lambda |
| |
| def _run(self, train_net, param): |
| output_blob = train_net.NextScopedBlob(param + '_l2_regularization') |
| train_net.LpNorm([param], [output_blob], p=2) |
| train_net.Scale([output_blob], [output_blob], scale=self.reg_lambda) |
| return output_blob |