| import torch |
| import torch.jit |
| import torch.nn as nn |
| import torch.nn.functional as F |
| from contextlib import contextmanager |
| from itertools import product, chain |
| import torch.jit.frontend |
| from torch.autograd import Variable, Function |
| from torch.autograd.function import traceable |
| from common import TestCase, run_tests, IS_WINDOWS |
| import io |
| import sys |
| import unittest |
| import inspect |
| import textwrap |
| import numpy as np |
| import tempfile |
| import shutil |
| |
| from torch.jit.frontend import NotSupportedError |
| |
| try: |
| import torchvision |
| HAS_TORCHVISION = True |
| except ImportError: |
| HAS_TORCHVISION = False |
| |
| |
| skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") |
| |
| RUN_CUDA = torch.cuda.is_available() |
| if torch.cuda.is_available(): |
| CUDA_VERSION = torch._C._cuda_getCompiledVersion() |
| for d in range(torch.cuda.device_count()): |
| major = torch.cuda.get_device_capability(d)[0] |
| if (CUDA_VERSION < 8000 and major >= 6) or (CUDA_VERSION < 9000 and major >= 7): |
| RUN_CUDA = False |
| |
| RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1 |
| |
| PY2 = sys.version_info[0] == 2 |
| WINDOWS = sys.platform == 'win32' |
| |
| |
| def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None): |
| hx, cx = hidden |
| gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh) |
| |
| ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) |
| ingate = F.sigmoid(ingate) |
| forgetgate = F.sigmoid(forgetgate) |
| cellgate = F.tanh(cellgate) |
| outgate = F.sigmoid(outgate) |
| |
| cy = (forgetgate * cx) + (ingate * cellgate) |
| hy = outgate * F.tanh(cy) |
| return hy, cy |
| |
| |
| def LSTMCellC(*args, **kwargs): |
| hy, cy = LSTMCell(*args, **kwargs) |
| return torch.cat((hy, cy)) |
| |
| |
| class TestJit(TestCase): |
| maxDiff = None |
| |
| @contextmanager |
| def assertCompiled(self, compiled_fn): |
| self.assertIsInstance(compiled_fn, torch._C.CompiledFunction) |
| hits, misses = compiled_fn.hits, compiled_fn.misses |
| yield |
| self.assertLess(hits, compiled_fn.hits) |
| self.assertEqual(misses, compiled_fn.misses) |
| |
| def assertExpectedTrace(self, trace, *args, **kwargs): |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| torch._C._jit_pass_lint(trace.graph()) |
| trace.set_graph(torch._C._jit_pass_canonicalize(trace.graph())) |
| torch._C._jit_pass_lint(trace.graph()) |
| self.assertExpected(str(trace), *args, **kwargs) |
| |
| def test_simple(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| def f(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, y), nderivs=0) |
| self.assertExpectedTrace(trace) |
| |
| # matmul is currently implemented as a native function, which |
| # exercises different codepaths in the JIT. The following two |
| # tests ensure that (1) matmul indeed traces into an atomic, |
| # native operation, and (2) the JIT knows how to run it |
| |
| def test_matmul_native(self): |
| x = Variable(torch.Tensor([[0.4]]), requires_grad=True) |
| y = Variable(torch.Tensor([[0.7]]), requires_grad=True) |
| |
| trace, z = torch.jit.get_trace_graph(lambda x, y: x.matmul(y), (x, y), nderivs=0) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def test_matmul_native_run(self): |
| x = Variable(torch.Tensor([[0.4]]), requires_grad=True) |
| y = Variable(torch.Tensor([[0.7]]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(x, y): |
| return x.matmul(y) |
| |
| z = fn(x, y) |
| with self.assertCompiled(fn): |
| z2 = fn(x, y) |
| self.assertEqual(z, z2) |
| |
| # index-2 is not implemented in interpreter |
| @unittest.expectedFailure |
| def test_index(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.LongTensor([0]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(x, y): |
| return x[y] |
| |
| z = fn(x, y) |
| with self.assertCompiled(fn): |
| z2 = fn(x, y) |
| self.assertEqual(z, z2) |
| |
| # Backwards tracing was broken for indexing by a constant, |
| # because it's internally implemented using as_strided, |
| # and we attempted to trace its derivative (which is not |
| # currently supported.) It currently works because |
| # slice() is now not marked as traceable. |
| def test_index_constant(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=1) |
| def fn(x): |
| return x[0] |
| |
| z = fn(x) |
| z.backward() |
| grad = x.grad.clone() |
| x.grad.zero_() |
| with self.assertCompiled(fn): |
| z2 = fn(x) |
| z2.backward() |
| grad2 = x.grad.clone() |
| self.assertEqual(z, z2) |
| self.assertEqual(grad, grad2) |
| |
| def test_scopes(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| def f(x, y): |
| out = x + y |
| with torch.jit.scope('Foo', out): |
| out = x * out |
| with torch.jit.scope('Bar', out): |
| out = torch.tanh(out) |
| out = torch.sigmoid(out) |
| return out |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, y), nderivs=0) |
| self.assertExpectedTrace(trace) |
| |
| def test_scopes_intermediate_node(self): |
| |
| class Net(nn.Module): |
| def forward(self, x): |
| return F.log_softmax(x, dim=0) |
| |
| net = Net() |
| t = Variable(torch.ones(2), requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(net, (t, )) |
| torch.onnx._optimize_trace(trace, False) |
| |
| self.assertExpectedTrace(trace) |
| |
| def test_scopes_identity_node(self): |
| |
| class Net(nn.Module): |
| |
| def __init__(self): |
| super(Net, self).__init__() |
| self.features = nn.Sequential( |
| nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
| nn.ReLU(inplace=True), |
| nn.MaxPool2d(kernel_size=3, stride=2), |
| ) |
| |
| def forward(self, x): |
| x = self.features(x) |
| return x |
| |
| model = Net() |
| |
| t = Variable(torch.ones(1, 3, 227, 227), requires_grad=True) |
| |
| with torch.onnx.set_training(model, False): |
| trace, _ = torch.jit.get_trace_graph(model, (t, )) |
| |
| torch.onnx._optimize_trace(trace, False) |
| |
| self.assertExpectedTrace(trace) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_lstm_fusion(self): |
| input = Variable(torch.randn(3, 10).float().cuda()) |
| hx = Variable(torch.randn(3, 20).float().cuda()) |
| cx = Variable(torch.randn(3, 20).float().cuda()) |
| module = nn.LSTMCell(10, 20).float().cuda() # Just to allocate weights with correct sizes |
| |
| trace, _ = torch.jit.get_trace_graph(LSTMCell, (input, (hx, cx)) + tuple(module.parameters())) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_fuse(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def run_lstm_fusion(self, use_cuda): |
| def to_type(x): |
| x = x.float() |
| if use_cuda: |
| x = x.cuda() |
| return x |
| |
| def rand_v(a, b): |
| return Variable(to_type(torch.randn(a, b))) |
| |
| input = rand_v(3, 10) |
| hx = rand_v(3, 20) |
| cx = rand_v(3, 20) |
| module = to_type(nn.LSTMCell(10, 20)) # Just to allocate weights with correct sizes |
| |
| CompiledLSTMCell = torch.jit.compile(nderivs=0)(LSTMCell) |
| |
| z = CompiledLSTMCell(input, (hx, cx), *module.parameters()) |
| with self.assertCompiled(CompiledLSTMCell): |
| z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters()) |
| self.assertEqual(z, z2) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_run_lstm_fusion_cuda(self): |
| self.run_lstm_fusion(True) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| def test_run_lstm_fusion_cpu(self): |
| self.run_lstm_fusion(False) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_run_lstm_fusion_concat(self): |
| input = Variable(torch.randn(3, 10).float().cuda()) |
| hx = Variable(torch.randn(3, 20).float().cuda()) |
| cx = Variable(torch.randn(3, 20).float().cuda()) |
| module = nn.LSTMCell(10, 20).float().cuda() # Just to allocate weights with correct sizes |
| |
| CompiledLSTMCell = torch.jit.compile(nderivs=0)(LSTMCellC) |
| |
| z = CompiledLSTMCell(input, (hx, cx), *module.parameters()) |
| with self.assertCompiled(CompiledLSTMCell): |
| z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters()) |
| self.assertEqual(z, z2) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_concat_fusion(self): |
| hx = Variable(torch.randn(3, 20).float().cuda()) |
| cx = Variable(torch.randn(3, 20).float().cuda()) |
| |
| def Foo(hx, cx): |
| return torch.cat((hx + cx, hx * cx)) |
| |
| trace, _ = torch.jit.get_trace_graph(Foo, (hx, cx)) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_fuse(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_fusion_distribute(self): |
| def f(x, y): |
| z1, z2 = (x + y).chunk(2, dim=1) |
| return z1 * z2 |
| x = Variable(torch.randn(4, 4).float().cuda()) |
| y = Variable(torch.randn(4, 4).float().cuda()) |
| trace, _ = torch.jit.get_trace_graph(f, (x, y), nderivs=0) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| self.assertExpectedTrace(trace, 'raw') |
| torch._C._jit_pass_fuse(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def test_arg_configurations(self): |
| """Different arg configurations should trigger different traces""" |
| x = Variable(torch.FloatTensor(4, 4).uniform_()) |
| x_double = Variable(x.data.double()) |
| x_grad = Variable(x.data.clone(), requires_grad=True) |
| y = Variable(torch.randn(4)) |
| |
| configurations = [ |
| (x,), |
| (x_double,), |
| (x_grad,), |
| (y,), |
| ([x, x],), |
| ([x, y],), |
| ] |
| if torch.cuda.is_available(): |
| x_cuda = Variable(x.data.cuda()) |
| configurations += [ |
| (x_cuda,), |
| ([x, x_cuda],), |
| ([x_cuda, x],), |
| ([[x_cuda, x]],), |
| ] |
| if torch.cuda.device_count() > 1: |
| x_cuda_1 = Variable(x.data.cuda(1)) |
| configurations += [ |
| (x_cuda_1,), |
| ([x_cuda, x_cuda_1],), |
| ] |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(*args): |
| in_vars, _ = torch._C._jit_flatten(args) |
| return in_vars[0] + 1 |
| |
| for i, config in enumerate(configurations): |
| self.assertFalse(fn.has_trace_for(*config)) |
| fn(*config) |
| self.assertTrue(fn.has_trace_for(*config)) |
| for unk_config in configurations[i + 1:]: |
| self.assertFalse(fn.has_trace_for(*unk_config)) |
| self.assertEqual(fn.hits, 0) |
| |
| def test_cse(self): |
| x = Variable(torch.Tensor([0.4, 0.3]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7, 0.5]), requires_grad=True) |
| |
| trace, inputs = torch._C._tracer_enter((x, y), 0) |
| |
| def fn(x, y): |
| w = (x + y) * (x + y) * (x + y) |
| t = torch.tanh(w) + torch.tanh(w) |
| z = (x + y) * (x + y) * (x + y) + t |
| return z |
| z = fn(*inputs) |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_cse(trace.graph()) |
| |
| self.assertExpectedTrace(trace) |
| |
| def test_compile_run_twice(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0, optimize=False) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| with self.assertCompiled(doit): |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_compile_addc(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True).float().cuda() |
| y = Variable(torch.Tensor([0.7]), requires_grad=True).float().cuda() |
| |
| @torch.jit.compile(nderivs=0) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y) + 1)) |
| |
| z = doit(x, y) |
| with self.assertCompiled(doit): |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y) + 1))) |
| self.assertEqual(z, z2) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") |
| def test_compile_fuse_last_device(self): |
| max_device = torch.cuda.device_count() - 1 |
| x = Variable(torch.Tensor([0.4]), requires_grad=True).float().cuda(max_device) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True).float().cuda(max_device) |
| |
| @torch.jit.compile(nderivs=0) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y) + 1)) |
| |
| z = doit(x, y) |
| with self.assertCompiled(doit): |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y) + 1))) |
| self.assertEqual(z, z2) |
| |
| def test_traced_function(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| with self.assertCompiled(doit): |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| def test_disabled_traced_function(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(enabled=False) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| def test_assign_traces(self): |
| """Check that output Variables are assigned traces before they are saved.""" |
| @traceable |
| class MyFn(Function): |
| @staticmethod |
| def forward(ctx, a): |
| out = a * 2 |
| ctx.save_for_backward(out) |
| return out |
| |
| @staticmethod |
| def backward(ctx, grad_a): |
| a, = ctx.saved_tensors |
| return a * grad_a |
| |
| x = Variable(torch.randn(10, 10), requires_grad=True) |
| trace, out = torch.jit.get_trace_graph(MyFn.apply, x, nderivs=1) |
| out.sum().backward() |
| torch._C._jit_pass_dce(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def test_legacy_traced_module(self): |
| input = Variable(torch.randn(3, 10)) |
| hx = Variable(torch.randn(3, 20)) |
| cx = Variable(torch.randn(3, 20)) |
| |
| @torch.jit.compile(nderivs=0) |
| class MyLSTMCell(nn.LSTMCell): |
| pass |
| |
| lstm = MyLSTMCell(10, 20) |
| |
| out = lstm(input, (hx, cx)) |
| with self.assertCompiled(lstm): |
| out2 = lstm(input, (hx, cx)) |
| self.assertEqual(out, out2) |
| |
| def test_autograd_closure(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| trace, inputs = torch._C._tracer_enter((x, y), 1) |
| |
| def fn(x, y): |
| z = torch.sigmoid(x * (x + y)) |
| w = torch.abs(x * x * x + y) + Variable(torch.ones(1)) |
| return z, w |
| z, w = fn(*inputs) |
| |
| torch._C._tracer_exit((z, w)) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| (z * w).backward() |
| torch._C._jit_pass_dce(trace.graph()) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| x_grad = x.grad.data.clone() |
| x.grad.data.zero_() |
| |
| function = torch._C._jit_createInterpreterFactory(trace) |
| torch._C._jit_pass_lint(trace.graph()) |
| z2, w2 = function()(x, y) |
| (z2 * w2).backward() |
| self.assertEqual(z, z2) |
| self.assertEqual(w, w2) |
| self.assertEqual(x.grad.data, x_grad) |
| |
| def test_verify(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile |
| def f(x, y): |
| z = torch.sigmoid(x * (x + y)) |
| w = torch.abs(x * x * x + y) + Variable(torch.ones(1)) |
| return z, w |
| |
| torch.jit.verify(f, (x, y), loss_fn=lambda z, w: z * w, devices=[]) |
| |
| def test_constant(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| trace, (tx,) = torch._C._tracer_enter((x,), 0) |
| |
| y = Variable(torch.diag(torch.Tensor([2, 2]))) |
| z = tx.matmul(y) |
| |
| torch._C._tracer_exit((z,)) |
| function = torch._C._jit_createInterpreterFactory(trace) |
| |
| z2 = function()(x) |
| self.assertEqual(z, z2) |
| |
| y.data.fill_(1000) # make sure the data has been cloned |
| |
| x2 = Variable(torch.ones(2, 2) * 2, requires_grad=True) |
| z3 = function()(x2) |
| self.assertEqual(z3.data, torch.ones(2, 2) * 4) |
| |
| def test_c_function(self): |
| x = Variable(torch.randn(1, 3, 10, 10)) |
| m = nn.Conv2d(3, 8, 3, 1) |
| |
| trace, inputs = torch._C._tracer_enter((x,) + tuple(m.parameters()), 0) |
| y = m(inputs[0]) |
| torch._C._tracer_exit((y,)) |
| self.assertExpectedTrace(trace) |
| |
| def test_legacy_fail(self): |
| |
| class MyLegacyFn(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_output): |
| return grad_output |
| |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace, inputs = torch._C._tracer_enter((x,), 0) |
| self.assertRaisesRegex(RuntimeError, "MyLegacyFn", lambda: MyLegacyFn()(*inputs)) |
| torch._C._tracer_exit(inputs) |
| |
| def test_inplace_transplant(self): |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace, inputs = torch._C._tracer_enter((x,), 0) |
| |
| def fn(x): |
| y = x.clone() |
| y.add_(2) |
| y.add_(3) |
| return y |
| y = fn(*inputs) |
| torch._C._tracer_exit((y,)) |
| self.assertExpectedTrace(trace) |
| |
| def test_inplace_flags(self): |
| class InplaceFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| ctx.mark_dirty(x) |
| return x.add_(1) |
| |
| @staticmethod |
| def backward(ctx, go): |
| return go |
| |
| class RegularFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x.add(1) |
| |
| @staticmethod |
| def backward(ctx, go): |
| return go |
| |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace, inputs = torch._C._tracer_enter((x,), 0) |
| |
| def fn(x): |
| y = RegularFn.apply(x) |
| y = InplaceFn.apply(y) |
| y = InplaceFn.apply(y) |
| y = RegularFn.apply(y) |
| return y |
| y = fn(*inputs) |
| torch._C._tracer_exit((y,)) |
| torch._C._jit_pass_dce(trace.graph()) |
| ops = [n for n in trace.graph().nodes()] |
| for op in ops: |
| self.assertTrue(op.hasAttribute('inplace')) |
| inplace_flags = [False, True, True, False] |
| for op, is_inplace in zip(ops, inplace_flags): |
| self.assertEqual(op.i('inplace'), is_inplace) |
| |
| def test_inplace_check(self): |
| class MyInplaceFn(Function): |
| @staticmethod |
| def forward(self, x): |
| x.add_(1) |
| self.mark_dirty(x) |
| return x |
| |
| @staticmethod |
| def backward(self, grad): |
| return grad |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(x): |
| return MyInplaceFn.apply(x) |
| x = Variable(torch.randn(5, 5)) |
| fn(x) # trace |
| with self.assertRaisesRegex(RuntimeError, 'inplace MyInplaceFn'): |
| fn(x) |
| |
| def test_backward(self): |
| a = Variable(torch.randn(2, 2), requires_grad=True) |
| b = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| x = a |
| y = a * b |
| |
| trace, inputs = torch._C._tracer_enter((x, y), 2) |
| |
| def fn(x, y): |
| return y * 2 * x |
| z = fn(*inputs) |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| # Run first backward |
| grad, = torch.autograd.grad(z, x, Variable(torch.ones(2, 2), requires_grad=True), create_graph=True) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| # Run second backward |
| grad.sum().backward(create_graph=True) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| # Run dead code elimination to remove unused trace nodes |
| torch._C._jit_pass_dce(trace.graph()) |
| # This is nondeterministic, see: |
| # https://github.com/ezyang/pytorch/issues/227 |
| # self.assertExpectedTrace(trace) |
| self.skipTest("output is nondeterministic on Travis/Python 3.5") |
| |
| def test_backward_opaque(self): |
| x = Variable(torch.randn(3, 3), requires_grad=True) |
| y = Variable(torch.randn(3, 3), requires_grad=True) |
| |
| trace, inputs = torch._C._tracer_enter((x, y), 2) |
| |
| def fn(x, y): |
| return x.cross(y) |
| z = fn(*inputs) |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| # Run first backward |
| grad, = torch.autograd.grad(z, x, Variable(torch.ones(3, 3), requires_grad=True), create_graph=True) |
| torch._C._jit_pass_lint(trace.graph()) |
| |
| # Run dead code elimination to remove unused trace nodes |
| torch._C._jit_pass_dce(trace.graph()) |
| # This is nondeterministic, see: |
| # https://github.com/ezyang/pytorch/issues/227 |
| # self.assertExpectedTrace(trace) |
| self.skipTest("output is nondeterministic on Travis/Python 3.5") |
| |
| def test_backward_closure(self): |
| """Check that autograd closures handle multiple stages correctly.""" |
| x = Variable(torch.randn(1), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=2) |
| def fn(x): |
| return x * x |
| |
| # Generate trace |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| self.assertFalse(fn.has_trace_for(x)) |
| grad_x.backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| |
| x_grad = x.grad.data.clone() |
| x.grad.data.zero_() |
| |
| # Run the trace |
| with self.assertCompiled(fn): |
| output = fn(x) |
| grad_x, = torch.autograd.grad(output, (x,), create_graph=True) |
| grad_x.backward() |
| |
| self.assertEqual(x.grad.data, x_grad) |
| |
| def test_trace_expire(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| y = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| def record_trace(num_backwards): |
| trace, inputs = torch._C._tracer_enter((x, y), num_backwards) |
| |
| def fn(x, y): |
| return y * 2 * x |
| z = fn(*inputs) |
| torch._C._tracer_exit((z,)) |
| return z, trace |
| |
| def check(expired, complete): |
| self.assertEqual(trace.is_expired, expired) |
| self.assertEqual(trace.is_complete, complete) |
| |
| z, trace = record_trace(0) |
| check(False, True) |
| del z |
| check(False, True) |
| |
| z, trace = record_trace(1) |
| check(False, False) |
| del z |
| check(True, False) |
| |
| z, trace = record_trace(1) |
| check(False, False) |
| z.sum().backward() |
| check(False, True) |
| del z |
| check(False, True) |
| |
| def test_multiuse_fn(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| w = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| @torch.jit.compile |
| def cell(x, w): |
| return x * w + 2 |
| |
| out = cell(cell(cell(x, w), w), w) |
| self.assertFalse(cell.has_trace_for(x, w)) |
| |
| out.sum().backward() |
| self.assertTrue(cell.has_trace_for(x, w)) |
| |
| torch.jit.verify(cell, (x, w), devices=[]) |
| |
| def test_output_unflatten(self): |
| """Check that outputs of traced functions retain the original structure and nesting""" |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| def fn(x): |
| return (x * 2, (x ** 2, x + 4, (x + 2,), ), x * 4) |
| |
| expected_out = fn(x) |
| fn = torch.jit.compile(fn) |
| |
| def recursive_sum(obj): |
| if isinstance(obj, Variable): |
| return obj.sum() |
| else: |
| return sum(recursive_sum(o) for o in obj) |
| |
| recursive_sum(fn(x)).backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| with self.assertCompiled(fn): |
| self.assertEqual(fn(x), expected_out) |
| |
| def test_input_flatten(self): |
| """Check that inputs to traced functions are flattened""" |
| def make_var(): |
| return Variable(torch.randn(1), requires_grad=True) |
| x = (make_var(), (make_var(), make_var())) |
| |
| def fn(x, t): |
| y, z = t |
| return x * y * z |
| |
| expected_out = fn(*x) |
| fn = torch.jit.compile(fn) |
| fn(*x).backward() |
| self.assertTrue(fn.has_trace_for(*x)) |
| with self.assertCompiled(fn): |
| self.assertEqual(fn(*x), expected_out) |
| |
| def test_flags(self): |
| x = Variable(torch.randn(2, 2)) |
| y = Variable(torch.randn(2, 2)) |
| |
| @torch.jit.compile |
| def fn(x, y): |
| return (x * x + y * y + x * y).sum() |
| |
| grads = {} |
| for rx, ry in product((True, False), repeat=2): |
| x.requires_grad = rx |
| y.requires_grad = ry |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| out = fn(x, y) |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| for v, name, compute in [(x, 'x', rx), (y, 'y', ry)]: |
| if not compute: |
| continue |
| grad_v, = torch.autograd.grad(out, v, retain_graph=True) |
| expected_grad = grads.setdefault(name, grad_v) |
| self.assertEqual(grad_v, expected_grad) |
| self.assertEqual(fn.has_trace_for(x, y), rx or ry) |
| |
| def test_no_grad_fallback(self): |
| """Check that Traceable falls back to num_backwards=0 if in no-backprop mode""" |
| x = Variable(torch.randn(2, 2)) |
| y = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| @torch.jit.compile |
| def fn(x, y): |
| return x * x + x * y |
| |
| out = fn(x, y) |
| self.assertFalse(fn.has_trace_for(x, y)) |
| with torch.no_grad(): |
| out = fn(x, y) |
| self.assertTrue(fn.has_trace_for(x, y)) |
| with self.assertCompiled(fn): |
| out2 = fn(x, y) |
| self.assertEqual(out, out2) |
| |
| def test_backward_flag_checks(self): |
| x = Variable(torch.randn(1), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=2) |
| def fn(x): |
| return x * x |
| |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| self.assertFalse(fn.has_trace_for(x)) |
| grad_x.backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| |
| with self.assertRaisesRegex(RuntimeError, 'was compiled with'): |
| fn(x).backward(Variable(torch.ones(1), requires_grad=True)) |
| with self.assertRaisesRegex(RuntimeError, 'was compiled with'): |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| grad_x.backward(Variable(torch.ones(1), requires_grad=True)) |
| |
| # TODO: Test executing this |
| |
| def test_python_ir(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| traced, _ = torch.jit.get_trace_graph(doit, (x, y)) |
| g = torch._C._jit_get_graph(traced) |
| g2 = torch._C.Graph() |
| g_to_g2 = {} |
| for node in g.inputs(): |
| g_to_g2[node] = g2.addInput() |
| for node in g.nodes(): |
| n_ = g2.createClone(node, lambda x: g_to_g2[x]) |
| g2.appendNode(n_) |
| for o, no in zip(node.outputs(), n_.outputs()): |
| g_to_g2[o] = no |
| |
| for node in g.outputs(): |
| g2.registerOutput(g_to_g2[node]) |
| |
| t_node = g2.create("prim::TensorTest").t_("a", torch.ones([2, 2])) |
| assert(t_node.attributeNames() == ["a"]) |
| g2.appendNode(t_node) |
| assert(torch.equal(torch.ones([2, 2]), t_node.t("a"))) |
| self.assertExpected(str(g2)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA") |
| def test_cpp(self): |
| # rather than rebuild assertExpected in cpp, |
| # just glob all the cpp outputs into one file for now |
| self.assertExpected(torch._C._jit_run_cpp_tests()) |
| |
| def test_batchnorm(self): |
| x = Variable(torch.randn(2, 2, 2, 2).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(nn.BatchNorm2d(2), x) |
| self.assertExpectedTrace(trace) |
| |
| def test_dropout(self): |
| x = Variable(torch.randn(2, 2).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(nn.Dropout(0.6), x) |
| self.assertExpectedTrace(trace) |
| |
| def test_batchnorm_run_twice(self): |
| @torch.jit.compile(nderivs=0) |
| class MyBatchNorm2d(nn.BatchNorm2d): |
| pass |
| |
| bn = MyBatchNorm2d(1) |
| x = Variable(torch.randn(5, 1, 2, 1)) |
| z = bn(x) |
| with self.assertCompiled(bn): |
| z2 = bn(x) |
| self.assertEqual(z, z2) |
| |
| def test_non_decorator_use_fails(self): |
| MyLSTM = torch.jit.compile(nn.LSTM) |
| self.assertRaisesRegex(TypeError, "class decorator", lambda: MyLSTM(2, 2)) |
| |
| def test_conv(self): |
| x = Variable(torch.randn(20, 16, 50, 40).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(nn.Conv2d(16, 13, 3, bias=False), x) |
| self.assertExpectedTrace(trace) |
| |
| def test_reuse_function(self): |
| @torch.jit.compile(nderivs=0) |
| def clinear(*args): |
| return F.linear(*args) |
| |
| def cast(x): |
| return x |
| |
| input = Variable(cast(torch.randn(1, 1))) |
| weights = Variable(cast(torch.randn(1, 1))) |
| bias = Variable(cast(torch.randn(1, 1))) |
| |
| # linear AKA addmm without bias is of particular interest |
| # because we allocate a zero-filled new variable when we execute, |
| # and then *fill* it with the result |
| |
| r1_ = clinear(input, weights) |
| with self.assertCompiled(clinear): |
| r1 = clinear(r1_, weights) |
| r2 = F.linear(F.linear(input, weights), weights) |
| |
| self.assertEqual(r1, r2) |
| |
| def test_unused_input(self): |
| @torch.jit.compile(nderivs=1) |
| def fn(a, b, c): |
| return a + b |
| |
| a, b, c = [Variable(torch.randn(2, 2), requires_grad=True) for _ in range(3)] |
| fn(a, b, c).sum().backward() |
| with self.assertCompiled(fn): |
| fn(a, b, c).sum().backward() |
| |
| def test_repeated_input(self): |
| @torch.jit.compile(nderivs=1) |
| def fn(a, b): |
| return a + b |
| |
| a, b = [Variable(torch.randn(2, 2), requires_grad=True) for _ in range(2)] |
| fn(a, a).sum().backward() |
| with self.assertCompiled(fn): |
| fn(a, a).sum().backward() |
| with self.assertCompiled(fn): |
| fn(a, b).sum().backward() |
| self.assertExpected(str(fn.graph_for(a, a))) |
| |
| def test_repeated_output(self): |
| @torch.jit.compile(nderivs=1) |
| def fn(a, b): |
| z = a + b |
| return z, z |
| |
| a, b = [Variable(torch.randn(2, 2), requires_grad=True) for _ in range(2)] |
| sum(fn(a, b)).sum().backward() |
| with self.assertCompiled(fn): |
| sum(fn(a, b)).sum().backward() |
| self.assertExpected(str(fn.graph_for(a, b))) |
| |
| def test_re_enter(self): |
| @torch.jit.compile(nderivs=1) |
| def fn(a, b): |
| return a + b |
| |
| @torch.jit.compile(nderivs=1) |
| def fn2(a, b, c): |
| return fn(a, b) + c |
| |
| a, b, c = [Variable(torch.randn(2, 2), requires_grad=True) for _ in range(3)] |
| |
| fn(a, b).sum().backward() |
| with self.assertCompiled(fn): |
| fn(a, b).sum().backward() |
| |
| fn2(a, b, c).sum().backward() |
| with self.assertCompiled(fn2): |
| fn2(a, b, c).sum().backward() |
| |
| def test_mini_wlm(self): |
| """Exercise null-edge pruning in the tracer.""" |
| |
| @torch.jit.compile |
| class MyModel(nn.Module): |
| def __init__(self): |
| super(MyModel, self).__init__() |
| self.encoder = nn.Embedding(2, 2) |
| |
| def forward(self, input, hidden): |
| emb = self.encoder(input) |
| hidden = hidden.clone() # simulate some RNN operation |
| return emb, hidden |
| |
| model = MyModel() |
| |
| x = Variable(torch.LongTensor([[0, 1], [1, 0]])) |
| y = Variable(torch.FloatTensor([0])) |
| |
| z, _ = model(x, y) |
| z.sum().backward() |
| self.assertTrue(model.has_trace_for(x, y)) |
| |
| with self.assertCompiled(model): |
| z, _ = model(x, y) |
| z.sum().backward() |
| |
| def test_module_cast(self): |
| """Compiled modules can be casted to other data types""" |
| @torch.jit.compile(nderivs=0) |
| class Adder(nn.Module): |
| def __init__(self): |
| super(Adder, self).__init__() |
| self.y = nn.Parameter(torch.randn(2, 2)) |
| |
| def forward(self, x): |
| return x + self.y |
| |
| x = Variable(torch.randn(2, 2).float()) |
| # Wrap it in a sequential to make sure it works for submodules |
| a = nn.Sequential(Adder()).float() |
| |
| def check_type(caster): |
| caster(a) |
| a(caster(x)) |
| with self.assertCompiled(a[0]): |
| a(caster(x)) |
| |
| check_type(lambda x: x) |
| check_type(lambda x: x.double()) |
| if torch.cuda.is_available(): |
| check_type(lambda x: x.float().cuda()) |
| check_type(lambda x: x.double().cuda()) |
| self.assertEqual(a[0].hits, 4 if torch.cuda.is_available() else 2) |
| |
| # Tracer fails when it receives the same grad variable as multiple input to |
| # traced region. The problem is that it's not immediately obvious how to |
| # assign multiple inputs to this Variable. It might be possible to solve |
| # this using the view mechanism, but this requires some thought. |
| # In general, it should be supported, because the user has no control |
| # over this (and it's quite common, e.g. the sum call below will pass the same |
| # grad variable as both inputs to grad of fn). |
| @unittest.skip("Broken - repeated grads trigger an assertion failure.") |
| def test_repeated_grad(self): |
| @torch.jit.compile |
| def fn(x): |
| return x * x, x + x |
| |
| x = Variable(torch.randn(5, 5), requires_grad=True) |
| # This shouldn't raise! |
| sum(fn(x)).sum().backward() |
| |
| def test_input_pruning(self): |
| """Check that stage 1 will return only one value""" |
| # One of the inputs doesn't require grad, so it should be pruned |
| @torch.jit.compile |
| def fn(x, y): |
| return x * y, x + y |
| |
| x = Variable(torch.randn(5, 5), requires_grad=True) |
| y = Variable(torch.randn(5, 5)) |
| |
| out = fn(x, y) |
| (out[0] * out[1]).sum().backward() |
| with self.assertCompiled(fn): |
| fn(x, y) |
| self.assertExpected(str(fn.graph_for(x, y))) |
| |
| def test_output_pruning(self): |
| """Check that stage 1 will take one value as an argument""" |
| # One of the outputs doesn't require grad, so it should be pruned |
| @torch.jit.compile |
| def fn(x, y): |
| return x * y, y + y |
| |
| x = Variable(torch.randn(5, 5), requires_grad=True) |
| y = Variable(torch.randn(5, 5)) |
| |
| out = fn(x, y) |
| (out[0] * out[1]).sum().backward() |
| with self.assertCompiled(fn): |
| fn(x, y) |
| self.assertExpected(str(fn.graph_for(x, y))) |
| |
| @skipIfNoTorchVision |
| def test_alexnet(self): |
| return |
| x = Variable(torch.randn(10, 3, 224, 224).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(torchvision.models.AlexNet(), x) |
| self.assertExpectedTrace(trace) |
| # NB: Purposely NOT testing protobuf export here |
| |
| def test_debug_info(self): |
| """Check that debug info doesn't crash and has some reasonable info""" |
| |
| @torch.jit.compile(nderivs=1) |
| def fn(x, y): |
| return x * y + x + y |
| |
| x = Variable(torch.randn(5, 5), requires_grad=True) |
| y = Variable(torch.randn(5, 5), requires_grad=True) |
| |
| out = fn(x, y) |
| |
| out.sum().backward() |
| |
| for _ in range(0, 100): |
| out = fn(x, y) |
| info_str = fn.jit_debug_info() |
| self.assertTrue("hits: 100" in info_str) |
| self.assertTrue("stage 1" in info_str) |
| |
| # Inplace copies don't work with tracer yet. |
| # This is actually somewhat important to support correctly |
| # as all backwards functions of views are implemented |
| # as a zero filled tensor with a gradient fill on the |
| # viewed portion. |
| @unittest.expectedFailure |
| def test_inplace_copy(self): |
| x = Variable(torch.randn(4, 4), requires_grad=True) |
| |
| def f(x): |
| out = Variable(torch.zeros(x.size())) |
| out.copy_(x) |
| return out |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, ), nderivs=0) |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def test_index_trace(self): |
| x = Variable(torch.randn(4, 4), requires_grad=True) |
| trace, z = torch.jit.get_trace_graph(lambda x: x[0], (x, ), nderivs=1) |
| z.sum().backward() |
| torch._C._jit_pass_lint(trace.graph()) |
| torch._C._jit_pass_dce(trace.graph()) |
| self.assertExpectedTrace(trace) |
| |
| def test_saved_output(self): |
| x = Variable(torch.randn(4, 4), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=1) |
| def fn(x): |
| return x.sigmoid() |
| |
| fn(x).sum().backward() |
| self.assertExpected(str(fn.graph_for(x))) |
| |
| def test_shared_param(self): |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.b = self.a = nn.Parameter(torch.randn(2, 2)) |
| |
| def forward(self, x): |
| return x * self.a + self.b |
| |
| m = MyModule() |
| trace, _ = torch.jit.get_trace_graph(m, (Variable(torch.randn(2, 2)),), nderivs=0) |
| self.assertEqual(len(list(trace.graph().inputs())), 2) |
| self.assertExpected(str(trace)) |
| |
| def test_nested_inplace(self): |
| x = Variable(torch.randn(2, 2)) |
| trace, _ = torch.jit.get_trace_graph(lambda x: F.threshold(x, 0, 0, inplace=True), (x,), nderivs=0) |
| self.assertExpectedTrace(trace) |
| |
| def checkGraphExecutor(self, func, reference_tensors, input_tensors=None, |
| optimize=True, drop=None, allow_unused=False): |
| def allSum(vs): |
| # drop allows us to remove some values from ever being used |
| # to test unused outputs |
| if drop is not None: |
| vs = vs[:-drop] |
| # we don't want all the grad for all the outputs to be the same |
| # so we multiply each by a constant |
| return sum([(i + 1) * v.sum() for i, v in enumerate(vs) if v is not None]) |
| if input_tensors is None: |
| input_tensors = reference_tensors |
| |
| nograd_inputs = [Variable(t) for t in reference_tensors] |
| recording_inputs = [Variable(t, requires_grad=True) |
| for t in reference_tensors] |
| |
| ge = torch._C.GraphExecutor(func, [Variable(t) for t in input_tensors], optimize) |
| |
| # test no gradients case |
| |
| outputs = func(*nograd_inputs) |
| outputs_ge = ge(*nograd_inputs) |
| self.assertEqual(outputs, outputs_ge) |
| |
| # test single grad case |
| |
| outputs = func(*recording_inputs) |
| grads = torch.autograd.grad(allSum(outputs), recording_inputs, |
| allow_unused=allow_unused) |
| |
| outputs_ge = ge(*recording_inputs) |
| grads_ge = torch.autograd.grad(allSum(outputs_ge), recording_inputs, |
| allow_unused=allow_unused) |
| self.assertEqual(outputs, outputs_ge) |
| self.assertEqual(grads, grads_ge) |
| |
| # test the grad grad case |
| |
| outputs = func(*recording_inputs) |
| l1 = allSum(outputs) |
| grads = torch.autograd.grad(l1, recording_inputs, create_graph=True, |
| allow_unused=allow_unused) |
| l2 = (allSum(grads) * l1) |
| grads2 = torch.autograd.grad(l2, recording_inputs, allow_unused=allow_unused) |
| |
| recording_inputs = [Variable(t, requires_grad=True) |
| for t in reference_tensors] |
| |
| outputs_ge = ge(*recording_inputs) |
| l1_ge = allSum(outputs_ge) |
| grads_ge = torch.autograd.grad( |
| l1_ge, recording_inputs, create_graph=True, allow_unused=allow_unused) |
| l2_ge = (allSum(grads_ge) * l1_ge) |
| grads2_ge = torch.autograd.grad(l2_ge, recording_inputs, allow_unused=allow_unused) |
| |
| self.assertEqual(outputs, outputs_ge) |
| self.assertEqual(grads, grads_ge) |
| self.assertEqual(grads2, grads2_ge) |
| |
| def run_ge_tests(self, optimize, use_cuda): |
| def rand(*args): |
| t = torch.rand(*args).float() |
| if use_cuda: |
| t = t.cuda() |
| return t |
| self.checkGraphExecutor(lambda a, b: a * b + b, |
| [rand(1), rand(1)], [rand(2, 3), rand(2, 3)], |
| optimize=optimize) |
| # trivial identity |
| self.checkGraphExecutor(lambda a, b: ( |
| b, a), [rand(1), rand(1)], optimize=optimize) |
| |
| def foo(a): |
| t = a * a |
| return t * t, 4 * t |
| self.checkGraphExecutor(foo, [rand(1)], optimize=optimize) |
| # unused input |
| self.checkGraphExecutor( |
| lambda a, b: a * a, [rand(1), rand(1)], optimize=optimize, |
| allow_unused=True) |
| # test outputs that do not get used in grad |
| self.checkGraphExecutor(foo, [rand(1)], drop=1, optimize=optimize) |
| # test autograd fallback |
| self.checkGraphExecutor(lambda a, b: a * b / |
| (a - 2 * b) + b, [rand(1), rand(1)], |
| optimize=optimize) |
| |
| def test_ge_unoptimized(self): |
| self.run_ge_tests(False, False) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| def test_ge_optimized(self): |
| self.run_ge_tests(True, False) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| def test_ge_cuda(self): |
| self.run_ge_tests(True, True) |
| |
| # more manual test of graph executor that can be used as a scratchpad |
| def test_ge(self): |
| def foo(a, b): |
| return a * b / (a - b) + b |
| V = Variable |
| a, b = V(torch.rand(1)), V(torch.rand(1)) |
| ge = torch._C.GraphExecutor(foo, (a, b)) |
| a, b = V(torch.rand(1), requires_grad=True), V( |
| torch.rand(1), requires_grad=True) |
| r, = ge(a, b) |
| da, db = torch.autograd.grad(r + 3, [a, b], create_graph=True) |
| |
| l2 = (da * db + db * db) |
| g2result = torch.autograd.grad(l2, [da, db]) |
| |
| r = foo(a, b) |
| da2, db2 = torch.autograd.grad(r + 3, [a, b], create_graph=True) |
| self.assertEqual(da, da2) |
| self.assertEqual(db, db2) |
| l3 = (da2 * db2 + db2 * db2) |
| g2result2 = torch.autograd.grad(l3, [da2, db2]) |
| self.assertEqual(g2result, g2result2) |
| |
| def test_trace_annotation(self): |
| @torch.jit.trace(Variable(torch.rand(1))) |
| def foo(a): |
| return a + a + a |
| s = Variable(torch.rand(2)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "calls .cuda()") |
| def test_traced_module(self): |
| class Model(nn.Module): |
| def __init__(self, num_features, num_layers): |
| super(Model, self).__init__() |
| self.num_layers = num_layers |
| layers = [[nn.Linear(num_features, num_features), nn.Sigmoid()] |
| for _ in range(num_layers)] |
| self.submodule = nn.Sequential(*chain(*layers)) |
| |
| def forward(self, x): |
| for i in range(self.num_layers): |
| x = self.submodule[i](x) + x |
| return x |
| |
| model = Model(5, 3) |
| x = torch.randn(2, 5) |
| traced_model = torch.jit.trace(x)(model) |
| |
| # We're missing some attributes these modules had initially. Make sure we can |
| # still get the __repr__() |
| model.__repr__() |
| |
| # XXX: indexing sequentials is broken |
| linear_submodule = next(iter(traced_model.submodule._modules.values())) |
| |
| # All attributes that aren't parameters should raise |
| with self.assertRaises(AttributeError): |
| linear_submodule.in_features |
| linear_submodule.weight |
| with self.assertRaises(RuntimeError): |
| traced_model.asdf = 4 |
| linear_submodule.weight = nn.Parameter(torch.randn(linear_submodule.weight.shape)) |
| with self.assertRaises(RuntimeError): |
| del linear_submodule.weight |
| |
| # Submodules can't be called |
| with self.assertRaises(RuntimeError): |
| linear_submodule(x) |
| |
| # Type casts |
| linear_submodule.cuda() |
| traced_model.float().cuda() |
| cuda_out = traced_model(x.float().cuda()) |
| traced_model.cpu() |
| cpu_out = traced_model(x.float()) |
| self.assertEqual(cpu_out, cuda_out) |
| traced_model.double() |
| |
| # state_dict + load_state_dict |
| state = {k: v.clone() for k, v in traced_model.state_dict().items()} |
| new_state = {k: v.clone().fill_(1) for k, v in state.items()} |
| out = traced_model(x) |
| traced_model.load_state_dict(new_state) |
| out_ones = traced_model(x) |
| traced_model.load_state_dict(state) |
| out_state = traced_model(x) |
| self.assertEqual(out, out_state) |
| self.assertNotEqual(out, out_ones) |
| |
| def test_shape_prop_mismatch_output(self): |
| with self.assertRaises(RuntimeError): |
| cu = torch.jit.CompilationUnit(''' |
| def test_shape_prop_mismatch_output(a): |
| b = slice(a, dim=0, end=-2, start=2, step=1) |
| b = topk(a, dim=0, k=2, largest=True, sorted=True) |
| return b |
| ''') |
| inputs = [torch.zeros(10)] |
| outputs = [torch.zeros(2), torch.from_numpy(np.array([1, 5])).long()] |
| |
| real_outs = cu.test_shape_prop_mismatch_output(*inputs) |
| self.assertEqual(real_outs, outputs) |
| |
| def test_view_shape_prop(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_view_shape_prop(a): |
| return view(a, size=[-1]) |
| ''') |
| inputs = [torch.zeros(10, 10)] |
| outputs = torch.zeros(100) |
| |
| real_outs = cu.test_view_shape_prop(*inputs) |
| self.assertEqual(real_outs, outputs) |
| |
| def test_integral_shape_inference(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_integral_shape_inference(a): |
| return a / a |
| ''') |
| inputs = [torch.ones(10, 10).type(torch.LongTensor)] |
| outputs = torch.ones(10, 10) |
| |
| self.assertEqual(cu.test_integral_shape_inference(*inputs), outputs) |
| |
| def test_shape_analysis_broadcast(self): |
| def broadcast(a, b): |
| return a + b |
| |
| x = torch.randn(3, 1, 5, requires_grad=True) |
| y = torch.randn(4, 1, 8, 5, requires_grad=True) |
| |
| graph = torch.jit._script_graph(broadcast) |
| torch._C._jit_pass_shape_analysis(graph, (x, y), False) |
| self.assertExpected(str(graph)) |
| |
| def test_fuser_multiple_blocks(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_fuser_multiple_blocks(this, that, theother, meme): |
| i = 0 |
| while i < 20: |
| this = cat(this, meme, dim=0) |
| that = cat(that, meme, dim=0) |
| theother = cat(theother, meme, dim=0) |
| i = i + 1 |
| return this, that, theother |
| ''') |
| |
| inputs = [torch.ones(0, 10, 10)] * 3 |
| inputs += [torch.ones(1, 10, 10)] |
| outputs = [torch.ones(20, 10, 10)] * 3 |
| |
| self.assertEqual(cu.test_fuser_multiple_blocks(*inputs), outputs) |
| |
| |
| class TestScript(TestCase): |
| |
| @contextmanager |
| def capture_stdout(self): |
| # No idea how to capture stdout from C++ on Windows |
| if WINDOWS: |
| yield [''] |
| return |
| import os |
| import fcntl |
| import errno |
| sys.stdout.flush() |
| stdout_fd = os.dup(1) |
| r, w = os.pipe() |
| try: |
| # Override stdout with r - dup is guaranteed to return the lowest free fd |
| os.close(1) |
| os.dup(w) |
| |
| captured_stdout = [''] |
| yield captured_stdout |
| sys.stdout.flush() # Make sure that Python hasn't buffered anything |
| |
| # Do the ugly dance to read all the data that was written into the pipe |
| fcntl.fcntl(r, fcntl.F_SETFL, os.O_NONBLOCK) |
| total_stdout = '' |
| while True: |
| try: |
| total_stdout += os.read(r, 1000).decode('ascii') |
| except OSError as e: |
| if e.errno != errno.EAGAIN: |
| raise |
| break |
| captured_stdout[0] = total_stdout |
| finally: |
| # Revert the change, and clean up all fds |
| os.close(1) |
| os.dup(stdout_fd) |
| os.close(stdout_fd) |
| os.close(r) |
| os.close(w) |
| |
| def checkScript(self, script, inputs, optimize, outputs=None, name='func', capture_output=False): |
| if isinstance(script, str): |
| cu = torch.jit.CompilationUnit(script, optimize) |
| ge = getattr(cu, name) |
| else: |
| if capture_output: |
| with self.capture_stdout() as captured: |
| outputs = script(*inputs) |
| else: |
| outputs = script(*inputs) |
| # Check the string frontend first |
| source = textwrap.dedent(inspect.getsource(script)) |
| self.checkScript(source, inputs, optimize, outputs, script.__name__, capture_output) |
| # Continue checking the Python frontend |
| ge = torch.jit.script(script) |
| |
| if capture_output: |
| with self.capture_stdout() as captured: |
| outputs_ge = ge(*inputs) |
| if not WINDOWS: |
| self.assertExpected(captured[0], subname='stdout') |
| else: |
| outputs_ge = ge(*inputs) |
| self.assertEqual(outputs, outputs_ge) |
| |
| def test_script_cu(self): |
| cu = torch.jit.CompilationUnit(''' |
| def foo(a): |
| b = a |
| return b |
| ''') |
| a = Variable(torch.rand(1)) |
| self.assertEqual(a, cu.foo(a)) |
| |
| def test_script_annotation(self): |
| @torch.jit.script |
| def foo(a): |
| return a + a + a |
| s = Variable(torch.rand(2)) |
| self.assertEqual(s + s + s, foo(s)) |
| |
| def test_add(self): |
| def func(a, b): |
| c = a + b |
| c += a |
| return c |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| self.checkScript(func, (a, b), optimize=True) |
| |
| def test_mul(self): |
| def func(a, b): |
| return a * b |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| self.checkScript(func, (a, b), optimize=True) |
| |
| def test_triple(self): |
| def func(x): |
| return 3. * x |
| |
| x = torch.rand(1, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def test_slice(self): |
| def func(x): |
| return x[:5] |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def test_gather(self): |
| def func(x): |
| return x[0] |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def test_keyword(self): |
| @torch.jit.script |
| def func(x): |
| return torch.sum(x, dim=0, keepdim=True) |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| y = func(x) |
| y2 = torch.sum(x, dim=0, keepdim=True) |
| self.assertEqual(y, y2) |
| |
| def test_func_call(self): |
| script = ''' |
| def add(a, b): |
| return a + b |
| |
| def mul(a, x): |
| return a * x |
| |
| def func(alpha, beta, x, y): |
| return add(mul(alpha, x), mul(beta, y)) |
| ''' |
| alpha = torch.rand(1, dtype=torch.float, requires_grad=True) |
| beta = torch.rand(1, dtype=torch.float, requires_grad=True) |
| x = torch.rand(3, dtype=torch.float, requires_grad=True) |
| y = torch.rand(3, dtype=torch.float, requires_grad=True) |
| outputs = alpha * x + beta * y |
| # NOTE: cannot optimize yet because broadcasts are not inserted before the fuser runs |
| self.checkScript(script, [alpha, beta, x, y], optimize=False, outputs=outputs) |
| |
| @unittest.skip("RuntimeError: VariableType::ID() not implemented") |
| def test_cast(self): |
| script = ''' |
| def to_int(x): |
| return int(x) |
| ''' |
| x = Variable(torch.FloatTensor([1.1, 2.3]), requires_grad=True) |
| out = Variable(torch.IntTensor([1, 2]), requires_grad=True) |
| self.checkScript(script, [x], optimize=True, outputs=[out], func='to_int') |
| |
| def test_python_frontend(self): |
| def fn(x, y, z): |
| q = x + y - z.sigmoid() |
| print(q) |
| w = -z |
| if not x and not y and z: |
| m = x if not z else y |
| while x < y > z: |
| q = x |
| return x |
| |
| ast = torch.jit.frontend.get_jit_ast(fn) |
| self.assertExpected(str(ast)) |
| |
| def _make_scalar_vars(self, arr, dtype): |
| return [torch.tensor(val, dtype=dtype) for val in arr] |
| |
| def test_while(self): |
| def func(a, b, max): |
| while a < max: |
| a = a + 1 |
| b = b + 1 |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([1, 1, 10], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_fibb(self): |
| def func(lim): |
| first = 1 |
| second = 1 |
| i = 1 |
| somenum = 5 |
| dontmutateme = 3 |
| third = 0 |
| while i < lim: |
| third = first + second |
| first = second |
| second = third |
| j = 0 |
| while j < 10: |
| somenum = somenum * 2 |
| j = j + 1 |
| i = i + j |
| i = i + dontmutateme |
| |
| st = second + third |
| fs = first + second |
| return third, st, fs |
| |
| inputs = self._make_scalar_vars([10], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if(self): |
| def func(a, b): |
| d = 3 |
| if a > 10: |
| a = 3 + d |
| else: |
| b = 3 + d |
| d = 4 |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([1, -1], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if_noelse(self): |
| def func(a, b): |
| if a > 10: |
| a = 3 + b |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([-1, 1], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_while_nonexistent_value(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value x"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a, b): |
| while a < 10: |
| a = a + x |
| b = b + 1 |
| return a + b |
| ''') |
| |
| def test_while_nonexistent_cond_value(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value x"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a, b): |
| while a < x: |
| a = a + 1 |
| b = b + 1 |
| return a + b |
| ''') |
| |
| def test_while_write_outer_then_read(self): |
| def func(a, b): |
| while a < 10: |
| a = a + 1 |
| b = a + 1 |
| return a + b |
| |
| inputs = self._make_scalar_vars([42, 1337], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_while_nest_if(self): |
| def func(a, b): |
| c = 0 |
| while a < 10: |
| a = a + 1 |
| b = b + 1 |
| if a > b: |
| c = -a |
| else: |
| c = -b |
| return c + 1 |
| |
| inputs = self._make_scalar_vars([-1234, 4321], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if_nest_while(self): |
| def func(a, b): |
| c = 0 |
| if a > b: |
| while a > b: |
| b = b + 1 |
| c = -b |
| return c |
| |
| inputs = self._make_scalar_vars([4321, 1234], torch.int) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_script_for_in_range(self): |
| script = ''' |
| def test_for_in_range(): |
| c = 0 |
| for i in range(100): |
| c += i |
| return c |
| ''' |
| self.checkScript(script, [], outputs=[4950], optimize=True, name='test_for_in_range') |
| |
| def test_script_for_in_range_dynamic(self): |
| script = ''' |
| def test_script_for_in_range_dynamic(): |
| c = 0 |
| for i in range(100): |
| acc = 0 |
| for j in range(i): |
| acc += j |
| c += acc |
| return c |
| ''' |
| self.checkScript(script, [], outputs=[161700], optimize=True, name='test_script_for_in_range_dynamic') |
| |
| def test_script_for_in_range_ast(self): |
| @torch.jit.script |
| def test_script_for_in_range_ast(zero): |
| c = zero |
| for i in range(100): |
| acc = zero |
| for j in range(i): |
| acc += j |
| c += acc |
| return c |
| |
| inputs = self._make_scalar_vars([0], torch.int64) |
| |
| self.assertEqual(test_script_for_in_range_ast(*inputs), 161700) |
| |
| def test_script_bool_constant(self): |
| script = ''' |
| def test_script_bool_constant(): |
| a = True |
| return a |
| ''' |
| outputs = [1] |
| self.checkScript(script, [], outputs[0], True, 'test_script_bool_constant') |
| |
| def test_ternary(self): |
| def func(a, b): |
| c = 3 |
| c = a + b if a > 3 else b |
| return c |
| |
| inputs_true = self._make_scalar_vars([5, 2], torch.int) |
| inputs_false = self._make_scalar_vars([1, 0], torch.int) |
| self.checkScript(func, inputs_true, optimize=True) |
| self.checkScript(func, inputs_false, optimize=True) |
| |
| def test_print(self): |
| def func(x, y): |
| q = (x + y).sigmoid() |
| print(q) |
| w = -q |
| return w * w |
| |
| x = torch.arange(4, requires_grad=True) |
| y = torch.arange(0, 8, 2, requires_grad=True) |
| self.checkScript(func, [x, y], optimize=True, capture_output=True) |
| |
| def test_multiple_assignment(self): |
| def outer_func(x): |
| return x * 2, x + 2 |
| |
| @torch.jit.script |
| def func(x): |
| y, z = outer_func(x) |
| return y + z |
| |
| x = torch.arange(4) |
| self.assertEqual(func(x), x * 2 + x + 2) |
| |
| def test_literals(self): |
| def func(a): |
| return a.view(size=[1, 2, 3]) |
| |
| a = torch.randn(6) |
| self.checkScript(func, [a], optimize=True) |
| |
| def test_return(self): |
| def no_return(a): |
| a + 1 |
| |
| def void_return(a): |
| return |
| |
| def one_return(a): |
| return a + 1. |
| |
| def multiple_returns(a): |
| return a * 1., a * 2., a * 3. |
| |
| a = torch.randn(1, dtype=torch.float) |
| self.checkScript(no_return, [a], optimize=True) |
| self.checkScript(void_return, [a], optimize=True) |
| self.checkScript(one_return, [a], optimize=True) |
| self.checkScript(multiple_returns, [a], optimize=True) |
| |
| def test_error(self): |
| @torch.jit.script |
| def foo(a): |
| return a.t() |
| s = Variable(torch.rand(10)) |
| # XXX: this should stay quiet in stay propagation and only fail in the interpreter |
| with self.assertRaisesRegex(RuntimeError, "failed in interpreter"): |
| foo(s) |
| |
| @torch.jit.script |
| def bar(c, b): |
| return c / b |
| |
| with self.assertRaisesRegex(RuntimeError, "failed in interpreter"): |
| bar(Variable(torch.rand(10), requires_grad=True), Variable(torch.rand(9), requires_grad=True)) |
| |
| def test_binop_unsupported_error(self): |
| with self.assertRaisesRegex(NotSupportedError, "unsupported binary operator:"): |
| @torch.jit.script |
| def binop(x, y): |
| # Replace this with another unsupported op when/if it gets supported |
| return x ** y |
| |
| def test_python_call(self): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| cu = torch.jit.CompilationUnit(''' |
| def other_func(a): |
| return a + a |
| |
| def test_call_python(a): |
| b = pyfunc(a) |
| b = other_func(b) |
| i = 0 |
| step = 1 |
| while i < 10: |
| b = pyfunc(b) |
| if b > 3.0: |
| b = pyfunc(b) |
| i = 11 |
| return b |
| ''') |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([54], torch.float) |
| |
| self.assertEqual(cu.test_call_python(*inputs), outputs[0]) |
| |
| def test_python_call_failure(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value pyfunc2"): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| cu = torch.jit.CompilationUnit(''' |
| def other_func(a): |
| return a + a |
| |
| def test_call_python(a): |
| b = pyfunc(a) |
| b = other_func(b) |
| i = 0 |
| step = 1 |
| while i < 10: |
| b = pyfunc2(b) |
| if b > 3.0: |
| b = pyfunc(b) |
| i = 11 |
| return b |
| ''') |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([54], torch.float) |
| |
| self.assertEqual(cu.test_call_python(*inputs), outputs) |
| |
| def test_python_call_annotation(self): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| @torch.jit.script |
| def foo(a): |
| return pyfunc(a) + pyfunc(a) |
| |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([6], torch.float) |
| self.assertEqual(foo(*inputs), outputs[0]) |
| |
| def test_python_call_annoytation_failure(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value pyfunc2"): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| @torch.jit.script |
| def foo(a): |
| return pyfunc2(a) + pyfunc(a) |
| |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([6], torch.float) |
| |
| self.assertEqual(foo(*inputs), outputs[0]) |
| |
| def test_desugar_module(self): |
| import torch.nn.functional as F |
| |
| def fn(x, slope): |
| a = torch.abs(x) |
| b = torch.nn.functional.prelu(x, slope) |
| c = F.prelu(x, slope) |
| return a, b, c |
| |
| x = torch.arange(-3, 4) |
| slope = torch.tensor([0.5]) |
| self.checkScript(fn, [x, slope], optimize=True) |
| |
| def test_script_module(self): |
| class M1(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M1, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class PModule(nn.Module): |
| def __init__(self): |
| super(PModule, self).__init__() |
| self.a = nn.Parameter(torch.randn(2, 3)) |
| |
| def forward(self, a): |
| return self.a.mm(a) |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(False) |
| # test submodule |
| self.sub = M1() |
| self.sub2 = PModule() |
| # test parameters |
| self.weight = nn.Parameter(torch.randn(2, 3)) |
| self.bias = nn.Parameter(torch.randn(2)) |
| # test defining a method from a string |
| self.define(""" |
| def hi(self, a): |
| return self.weight.mm(a) |
| """) |
| # test script methods |
| |
| @torch.jit.script_method |
| def doit(self, input): |
| # test use of parameter |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def doit2(self, input): |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| a = self.doit(input) |
| b = self.doit2(input) |
| c = self.hi(input) |
| d = self.sub2(input) |
| return a + b + self.bias + self.sub(a) + c + d |
| m2 = M2() |
| input = torch.randn(3, 2) |
| a = m2.weight.mm(input) |
| b = m2.weight.mm(input) |
| c = m2.weight.mm(input) |
| d = m2.sub2.a.mm(input) |
| ref = a + b + m2.bias + m2.sub.weight + a + c + d |
| self.assertEqual(ref, m2.forward(input)) |
| m2.weight = nn.Parameter(torch.zeros_like(m2.weight)) |
| m2.bias = nn.Parameter(torch.zeros_like(m2.bias)) |
| m2.sub.weight = nn.Parameter(torch.zeros_like(m2.sub.weight)) |
| m2.sub2.a.data.zero_() |
| self.assertEqual(torch.zeros(2, 2), m2.forward(torch.randn(3, 2))) |
| |
| def test_script_module_call_noscript(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.value = 1 |
| |
| def foo(self): |
| return torch.ones(2, 2) + self.value |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| return input + self.foo() |
| |
| m = M() |
| input = torch.randn(2, 2) |
| o = m(input) |
| self.assertEqual(o, input + torch.ones(2, 2) + 1) |
| # check that we can change python attributes |
| # and that those changes are picked up in script methods |
| m.value = 2 |
| o = m(input) |
| self.assertEqual(o, input + torch.ones(2, 2) + 2) |
| |
| def test_script_module_nochange_submodule(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.sub = nn.Linear(5, 5) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| return self.sub(input) |
| |
| m = M() |
| input = torch.randn(1, 5, 5) |
| o = m(input) |
| self.assertEqual(o, m.sub(input)) |
| with self.assertRaisesRegex(RuntimeError, "cannot re-assign"): |
| m.sub = nn.Linear(5, 5) |
| |
| def test_script_inline_trace_multiple_args(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| |
| def forward(self, input, input2): |
| return input + input2 |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(False) |
| self.m = torch.jit.trace(torch.zeros(4, 3), torch.zeros(4, 3))(M()) |
| |
| @torch.jit.script_method |
| def forward(self, inp): |
| return self.m(inp, inp) |
| |
| m2 = M2() |
| m2(torch.zeros(4, 3)) |
| |
| def test_script_module_const(self): |
| class M(torch.jit.ScriptModule): |
| |
| __constants__ = ['b', 'i', 'c'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = False |
| self.i = 1 |
| self.c = 3.5 |
| |
| @torch.jit.script_method |
| def forward(self): |
| return self.b, self.i, self.c |
| |
| m = M() |
| o0, o1, o2 = m() |
| self.assertEqual(o0, 0) |
| self.assertEqual(o1, 1) |
| self.assertEqual(o2, 3.5) |
| |
| def test_script_module_fail_const(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = False |
| |
| @torch.jit.script_method |
| def forward(self): |
| return self.b |
| with self.assertRaisesRegex(RuntimeError, "is not usable in a script method"): |
| M() |
| |
| def test_script_module_valid_consts(self): |
| class Foo(torch.jit.ScriptModule): |
| __constants__ = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] |
| |
| def __init__(self): |
| super(Foo, self).__init__(False) |
| self.a = 1 |
| self.b = 1.2 |
| self.c = False |
| self.d = [nn.Linear(3, 4)] |
| self.e = lambda x: x |
| self.f = [3, 4, 5] |
| self.assertTrue(type(self.f) is tuple) |
| self.g = [3, (3, 4), 5] |
| with self.assertRaisesRegex(TypeError, "is not a valid constant"): |
| self.h = type(1) |
| with self.assertRaisesRegex(TypeError, "is not a valid constant"): |
| self.i = (3, 4, {}) |
| |
| def test_script_module_for(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['b'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = [1, 2, 3, 4] |
| |
| @torch.jit.script_method |
| def forward(self): |
| sum = 0 |
| for i in self.b: |
| sum += i |
| return sum |
| |
| m = M() |
| self.assertEqual(m(), 10) |
| |
| def test_script_module_for2(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['mods'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = nn.ModuleList([Sub() for i in range(10)]) |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| for m in self.mods: |
| v = m(v) |
| return v |
| |
| i = torch.Tensor(2) |
| m = M() |
| o = m(i) |
| v = i |
| for sub in m.mods: |
| v = sub(v) |
| self.assertEqual(o, v) |
| |
| def test_script_module_const_submodule_fail(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = [Sub() for _ in range(10)] |
| |
| @torch.jit.script_method |
| def forward(self): |
| for _ in self.mods: |
| print(1) |
| return 4 |
| |
| with self.assertRaisesRegex(RuntimeError, "did you forget to add it __constants__"): |
| M() |
| |
| def test_script_module_not_tuple(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['mods'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = 1 |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| for m in self.mods: |
| print(m) |
| return v |
| with self.assertRaisesRegex(RuntimeError, "cannot be used as a tuple"): |
| M() |
| |
| class StarTestSumStarred(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestSumStarred, self).__init__() |
| |
| def forward(self, *inputs): |
| output = inputs[0] |
| for i in range(1, len(inputs)): |
| output += inputs[i] |
| return output |
| |
| class StarTestReturnThree(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestReturnThree, self).__init__() |
| |
| def forward(self, rep): |
| return rep, rep, rep |
| |
| def test_script_star_expr(self): |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.m = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3))(TestScript.StarTestSumStarred()) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestReturnThree()) |
| |
| @torch.jit.script_method |
| def forward(self, rep): |
| tup = self.g(rep) |
| return self.m(*tup) |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| def test_script_star_expr_string(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.m = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3))(TestScript.StarTestSumStarred()) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestReturnThree()) |
| |
| self.define(''' |
| def forward(self, rep): |
| tup = self.g(rep) |
| return self.m(*tup) |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| class StarTestSumAndReturnThree(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestSumAndReturnThree, self).__init__() |
| |
| def forward(self, *inputs): |
| output = inputs[0] |
| for i in range(1, len(inputs)): |
| output += inputs[i] |
| return output, output, output |
| |
| def test_script_star_assign(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestSumAndReturnThree()) |
| self.define(''' |
| def forward(self, rep): |
| head, *tail = self.g(rep) |
| return head |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| def test_script_module_star_assign2(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.g = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3) |
| )( |
| TestScript.StarTestSumAndReturnThree() |
| ) |
| self.define(''' |
| def forward(self, rep): |
| *head, tail = self.g(rep, rep, rep) |
| return tail |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.ones(4, 3)), 3 * torch.ones(4, 3)) |
| |
| def test_script_module_star_assign_fail_pythonop(self): |
| |
| with self.assertRaisesRegex(RuntimeError, "value cannot be used as a tuple"): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| |
| def myfunc(): |
| return torch.zeros(1, 2, 3), torch.zeros(1, 2, 3) |
| |
| self.define(''' |
| def forward(self, rep): |
| a, *b = myfunc() |
| return a |
| ''') |
| |
| m = M2() |
| m(torch.zeros(4, 3)) |
| |
| def test_script_module_star_assign_fail_builtin(self): |
| with self.assertRaisesRegex(RuntimeError, "value cannot be used as a tuple"): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| |
| self.define(''' |
| def forward(self, rep): |
| a, *b = torch.neg(rep) |
| return a |
| ''') |
| |
| m = M2() |
| m(torch.zeros(4, 3)) |
| |
| def test_pack_padded_pad_packed_trace(self): |
| from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
| T, B, C = 3, 5, 7 |
| |
| class PadPackedWrapper(torch.nn.Module): |
| def __init__(self): |
| super(PadPackedWrapper, self).__init__() |
| |
| def forward(self, x, seq_lens): |
| x = pack_padded_sequence(x, seq_lens) |
| x, _ = pad_packed_sequence(x) |
| return x |
| |
| x = np.ones((T, B, C)) |
| seq_lens = np.array([3, 3, 2, 2, 1], dtype=np.int32) |
| # set padding value so we can test equivalence |
| for b in range(B): |
| if seq_lens[b] < T: |
| x[seq_lens[b]:, b, :] = 0 |
| seq_lens = torch.from_numpy(seq_lens) |
| x = torch.autograd.Variable(torch.from_numpy(x), requires_grad=True) |
| |
| m = PadPackedWrapper() |
| m_traced = torch.jit.trace(x, seq_lens)(m) |
| |
| y = m(x, seq_lens) |
| loss = torch.sum(y) |
| loss.backward() |
| grad = x.grad.clone() |
| x.grad.zero_() |
| |
| y_traced = m_traced(x, seq_lens) |
| loss_traced = torch.sum(y_traced) |
| loss_traced.backward() |
| grad_traced = x.grad.clone() |
| |
| self.assertEqual(y_traced, x) |
| self.assertEqual(y_traced, y) |
| self.assertEqual(grad, grad_traced) |
| |
| f = io.BytesIO() |
| torch.onnx._export(m, (x, seq_lens), f, verbose=False) |
| |
| def test_script_outputs(self): |
| with self.assertRaisesRegex(RuntimeError, "value cannot be used as a tuple"): |
| @torch.jit.script |
| def foo(a): |
| c, d = a + a |
| return c + d |
| |
| @torch.jit.script |
| def return3(): |
| return 1, 2, 3 |
| |
| with self.assertRaisesRegex(RuntimeError, "too many values to unpack"): |
| @torch.jit.script |
| def bind2(): |
| a, b = return3() |
| print(a) |
| print(b) |
| |
| def test_script_chunk(self): |
| @torch.jit.script |
| def foo(a): |
| b, c = torch.chunk(a, dim=0, chunks=2) |
| return b |
| v = torch.rand(10, 3) |
| self.assertEqual(torch.chunk(v, dim=0, chunks=2)[0], foo(v)) |
| |
| with self.assertRaisesRegex(RuntimeError, "too many values to unpack"): |
| @torch.jit.script |
| def foo(a): |
| b, c = torch.chunk(a, dim=0, chunks=3) |
| return b |
| |
| def test_rnn_trace_override(self): |
| from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
| num_layers = 3 |
| T, B, C = 11, 5, 7 |
| |
| class RNNTraceWrapper(torch.nn.Module): |
| def __init__(self, cell_type): |
| super(RNNTraceWrapper, self).__init__() |
| if cell_type == 'RNN': |
| self.rnn = torch.nn.RNN(input_size=C, hidden_size=C, num_layers=num_layers) |
| elif cell_type == 'LSTM': |
| self.rnn = torch.nn.LSTM(input_size=C, hidden_size=C, num_layers=num_layers) |
| elif cell_type == 'GRU': |
| self.rnn = torch.nn.GRU(input_size=C, hidden_size=C, num_layers=num_layers) |
| |
| def forward(self, x, seq_lens): |
| x = pack_padded_sequence(x, seq_lens) |
| x, _ = self.rnn(x) |
| x, _ = pad_packed_sequence(x) |
| return x |
| |
| for cell_type in ['RNN', 'LSTM', 'GRU']: |
| x = torch.ones(T, B, C, requires_grad=True) |
| seq_lens = torch.from_numpy(np.array([11, 3, 2, 2, 1], dtype=np.int32)) |
| |
| m = RNNTraceWrapper(cell_type) |
| m_traced = torch.jit.trace(x, seq_lens)(m) |
| |
| y = m(x, seq_lens) |
| loss = torch.sum(y) |
| loss.backward() |
| grad = x.grad.clone() |
| x.grad.zero_() |
| |
| y_traced = m_traced(x, seq_lens) |
| loss_traced = torch.sum(y_traced) |
| loss_traced.backward() |
| grad_traced = x.grad.clone() |
| |
| self.assertEqual(y_traced, y) |
| self.assertEqual(grad, grad_traced) |
| |
| f = io.BytesIO() |
| torch.onnx._export(m, (x, seq_lens), f, verbose=False) |
| |
| def test_tuples(self): |
| @torch.jit.script |
| def foo(i): |
| a = torch.chunk(i, dim=0, chunks=2) |
| c = a |
| # some nonsense with if-statements and loops to check |
| # that tuple lowering doesn't fail |
| if True: |
| c = torch.chunk(i, dim=0, chunks=2) |
| t0, t1 = c |
| while False: |
| t0, t1 = c |
| c = torch.chunk(i, dim=0, chunks=2) |
| return t0 |
| |
| v = torch.rand(10, 3) |
| self.assertEqual(torch.chunk(v, dim=0, chunks=2)[0], foo(v)) |
| |
| with self.assertRaisesRegex(RuntimeError, "variable 'a' previously has type"): |
| @torch.jit.script |
| def mixtypes(): |
| a = torch.chunk(1, dim=0, chunks=2) |
| if True: |
| a = 4 |
| |
| |
| # Smoke tests for export methods |
| class TestPytorchExportModes(unittest.TestCase): |
| class MyModel(nn.Module): |
| def __init__(self): |
| super(TestPytorchExportModes.MyModel, self).__init__() |
| |
| def forward(self, x): |
| return x.t() |
| |
| def test_protobuf(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.PROTOBUF_FILE) |
| |
| def test_zipfile(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.ZIP_ARCHIVE) |
| |
| def test_compressed_zipfile(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.COMPRESSED_ZIP_ARCHIVE) |
| |
| def test_directory(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| d = tempfile.mkdtemp() |
| torch.onnx._export(torch_model, (fake_input), d, verbose=False, |
| export_type=torch.onnx.ExportTypes.DIRECTORY) |
| shutil.rmtree(d) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |