blob: c9e76266fd71cee8e834d4112cd7e29d46c64bc9 [file] [log] [blame]
from typing import List, Tuple, Union, Dict, Any, Set, Mapping
from dataclasses import dataclass
import torch
import torch.fx
from torch.fx.node import _get_qualified_name
from torch.fx._compatibility import compatibility
Tensors = Union[Tuple[torch.Tensor], List[torch.Tensor]]
TensorOrTensors = Union[torch.Tensor, Tensors]
NodeList = List[torch.fx.Node]
NodeSet = Set[torch.fx.Node]
Names = List[str]
CALLABLE_NODE_OPS = {"call_module", "call_function", "call_method"}
@compatibility(is_backward_compatible=False)
def get_acc_ops_name(k):
if isinstance(k, str):
return k
elif k.__module__ and "acc_ops" in k.__module__:
return f"acc_ops.{k.__name__}"
else:
module = k.__module__
return f"{module if module else ''}.{k.__name__}"
@compatibility(is_backward_compatible=False)
def get_node_target(submodules: Mapping[str, torch.nn.Module], node: torch.fx.Node) -> str:
"""
Given a `node` returns its target typename.
For "call_method" node, return node.target which is the name of that method being called.
This could potential lead to conflict but should be okay because normally it's on a tensor.
For "call_function" node, return typename of node.target.
For "call_module" node, return typename of the module that node.target point to.
If seeing "_VariableFunctionsClass" in the target name string, it will be replaced by
"torch". e.g. _VariableFunctionsClass.relu would become torch.relu.
"""
assert node.op in CALLABLE_NODE_OPS, (
"Expect op types of " + ", ".join(CALLABLE_NODE_OPS) + f", but found {node.op}"
)
if node.op == "call_module":
assert isinstance(node.target, str)
submod = submodules[node.target]
submod_type = getattr(submod, "_base_class_origin", type(submod))
return get_acc_ops_name(submod_type)
elif node.op == "call_function":
target: Any = node.target
return (
f"acc_ops.{target.__name__}"
if target.__module__ is not None and "acc_ops" in target.__module__
else _get_qualified_name(target)
)
else:
assert isinstance(node.target, str)
return node.target
@compatibility(is_backward_compatible=False)
def is_node_output_tensor(node: torch.fx.Node) -> bool:
"""Checks if the node output produces a Tensor or not.
NOTE: This requires to run `ShapeProp` on the containing fx graph before
calling this function. This is because it works by checking the `type`
metadata on the node. This metadata is produced by the `ShapeProp`.
"""
type_ = node.meta.get("type", None)
return type_ is not None and issubclass(type_, torch.Tensor)
@compatibility(is_backward_compatible=False)
class FxNetAccFusionsFinder:
"""
Finds groups of connected ACC nodes that pass non-tensor data between each other.
Such groups are called fusion groups.
"""
def __init__(self, module: torch.fx.GraphModule, acc_nodes: NodeSet):
self.module = module
self.nodes = list(module.graph.nodes)
self.acc_nodes = acc_nodes
@dataclass
class FusionGroup:
# The smallest idx of nodes in the fusion group after topological sorting all the nodes in the model.
top_node_idx: int
# Nodes in this fusion group.
nodes: NodeSet
# Inputs to this fusion group.
inputs: NodeSet
# Nodes that in the fusion group that haven't been processed yet.
nodes_need_process: NodeSet
def add_node(self, node):
"""
Add a node to fusion group.
"""
if node in self.nodes:
return
self.nodes_need_process.add(node)
self.nodes.add(node)
self.inputs.discard(node)
self.inputs.update(
{
n
for n in node.all_input_nodes
if n.op in CALLABLE_NODE_OPS and n not in self.nodes
}
)
def recursive_add_node(
self,
fusion_group: "FxNetAccFusionsFinder.FusionGroup",
inputs: Union[NodeSet, NodeList],
):
"""
Start from inputs and going reverse topological order. If any upstream node
is in the fusion group, add all the nodes in this path to fusion group.
"""
for arg in inputs:
# Skip placeholder and get_attr because they won't be in the fusion group.
if arg.op not in CALLABLE_NODE_OPS:
continue
# If the node has smaller idx, it's already an upstream node of the fusion
# group. We don't need to check it anymore.
if self.nodes.index(arg) < fusion_group.top_node_idx:
continue
# If the node is in the fusion group, return True.
if arg in fusion_group.nodes:
return True
# Check the upstream nodes of the node, if any of them is in the fusion group
# we'll add this node to fusion group and return True.
if self.recursive_add_node(fusion_group, arg.all_input_nodes):
fusion_group.add_node(arg)
return True
return False
def __call__(self) -> Dict[torch.fx.Node, NodeSet]:
result: Dict[torch.fx.Node, NodeSet] = {}
acc_nodes = list(self.acc_nodes)
for node in acc_nodes:
if node in result:
continue
if node.op not in CALLABLE_NODE_OPS:
continue
if "tensor_meta" in node.meta:
continue
if node not in self.acc_nodes:
continue
fusion_group: "FxNetAccFusionsFinder.FusionGroup" = self.FusionGroup(
top_node_idx=self.nodes.index(node),
nodes={node},
inputs=set(node.all_input_nodes),
nodes_need_process={node},
)
while fusion_group.nodes_need_process:
node = fusion_group.nodes_need_process.pop()
self.recursive_add_node(fusion_group, fusion_group.inputs)
# Optionally add downstream nodes
if "tensor_meta" not in node.meta:
for user in node.users:
if user.op not in CALLABLE_NODE_OPS:
continue
if user in fusion_group.nodes:
continue
fusion_group.add_node(user)
self.recursive_add_node(fusion_group, fusion_group.inputs)
# Add some upstream nodes
for arg in node.all_input_nodes:
if arg.op not in CALLABLE_NODE_OPS:
continue
if "tensor_meta" in arg.meta:
continue
if arg in fusion_group.nodes:
continue
fusion_group.add_node(arg)
fusion_group.top_node_idx = min(
fusion_group.top_node_idx, self.nodes.index(arg)
)
self.recursive_add_node(fusion_group, fusion_group.inputs)
if not (set(fusion_group.nodes) <= self.acc_nodes):
self.acc_nodes -= fusion_group.nodes
else:
for n in fusion_group.nodes:
result[n] = fusion_group.nodes
return result
@compatibility(is_backward_compatible=False)
def legalize_graph(gm: torch.fx.GraphModule):
"""
Replace the graph of the given GraphModule with one that contains the same nodes as the
original, but in topologically sorted order.
This is used by the merge_matmul transformation below, which disturbs the topologically sorted
order of its input GraphModule, so that this order is restored before further transformation.
Arguments:
gm: The graph module to topologically sort. It is modified in-place.
"""
# Build an adjacency list representation of node dependencies in the graph. This also
# serves as a list of nodes that still need to be inserted into the new, topologically
# sorted graph.
dependencies = {node: node.all_input_nodes.copy() for node in gm.graph.nodes}
# Construct a new graph that will contain all nodes in topologically sorted order.
new_graph = torch.fx.Graph()
value_remap: Dict[torch.fx.Node, torch.fx.Node] = {}
# Copy over all nodes with no dependencies.
for node, deps in dependencies.items():
if not deps:
value_remap[node] = new_graph.node_copy(node, lambda n: value_remap[n])
# Remove the copied over nodes from the adjacency list.
for copied_node in value_remap.keys():
del dependencies[copied_node]
# While there are still nodes to insert into the new graph:
while dependencies:
copied_this_round = []
# Copy over all nodes whose dependencies already exist in the new graph.
for node, deps in dependencies.items():
all_deps_copied = True
for dep in deps:
if dep not in value_remap:
all_deps_copied = False
if all_deps_copied:
value_remap[node] = new_graph.node_copy(node, lambda n: value_remap[n])
copied_this_round.append(node)
# Delete all nodes copied over in this iteration from dependencies.
for copied_node in copied_this_round:
del dependencies[copied_node]
# Replace the old graph with the new, topologically sorted one.
gm.graph = new_graph