| from torch.fx.graph_module import GraphModule |
| from typing import Any, Callable, Dict, List, Tuple, Type |
| import torch |
| import torch.nn as nn |
| |
| from torch.fx._compatibility import compatibility |
| |
| |
| # Matching method matches the attribute name of current version to the attribute name of `target_version` |
| @compatibility(is_backward_compatible=False) |
| def default_matching(name: str, target_version: int) -> str: |
| """Default matching method |
| """ |
| return name |
| |
| # This dict maps the nn.Module class name to the attribute name list that we want to fetch for lowering. |
| # The first integer in the tuple is the version number of the nn.Module class when we create the parameter list. |
| # If there's a version mismatch then it means the parameter names in the book might be mismatched with nn.Module. |
| module_fetch_book: Dict[Type, Tuple[int, List[str], Callable[[str, int], str]]] = { |
| torch.nn.modules.linear.Linear: (1, ["weight", "bias"], default_matching), |
| torch.nn.modules.conv.Conv2d: ( |
| 1, ["weight", "bias", "kernel_size", "stride", "padding", "dilation", "groups", "padding_mode"], default_matching |
| ), |
| torch.nn.modules.batchnorm.BatchNorm2d: (2, ["weight", "bias", "running_mean", "running_var", "eps"], default_matching), |
| torch.nn.modules.pooling.AdaptiveAvgPool2d: (1, [], default_matching), |
| torch.nn.modules.pooling.MaxPool2d: ( |
| 1, ["kernel_size", "stride", "padding", "dilation", "return_indices", "ceil_mode"], default_matching |
| ), |
| torch.nn.modules.activation.ReLU: (1, ["inplace"], default_matching), |
| } |
| |
| @compatibility(is_backward_compatible=False) |
| def extract_attrs_for_lowering(mod: nn.Module) -> Dict[str, Any]: |
| """If `mod` is in `module_fetch_book`, fetch the mod's attributes that in the `module_fetch_book` |
| after checking module's version is compatible with the `module_fetch_book`. |
| """ |
| attrs_for_lowering: Dict[str, Any] = {} |
| attrs_for_lowering["name"] = torch.typename(mod) |
| |
| if type(mod) in module_fetch_book: |
| version, param_to_fetch, matching_method = module_fetch_book[type(mod)] |
| if version < mod._version: |
| raise RuntimeError(f"Fetcher version {version} try to fetch {torch.typename(mod)} version {mod._version}, " |
| "please upgrade the module_fetch_book, open an issue and @842974287 " |
| "or report a bug to AIACC team directly.") |
| for attr in param_to_fetch: |
| attrs_for_lowering[attr] = getattr(mod, matching_method(attr, mod._version)) |
| else: |
| raise RuntimeError(f"{torch.typename(mod)} is not in the module_fetch_book yet, " |
| "please add it to the module_fetch_book, open an issue and @842974287 " |
| "or report a bug to AIACC team directly.") |
| return attrs_for_lowering |
| |
| @compatibility(is_backward_compatible=False) |
| def lift_lowering_attrs_to_nodes(fx_module: GraphModule) -> None: |
| """Recursively traverse all `fx_module` nodes and fetch the module's attributes if the node is a leaf module. |
| """ |
| submodules = dict(fx_module.named_modules()) |
| |
| for node in fx_module.graph.nodes: |
| if node.op == "call_module": |
| if isinstance(submodules[node.target], GraphModule): |
| lift_lowering_attrs_to_nodes(submodules[node.target]) |
| else: |
| node.attrs_for_lowering = extract_attrs_for_lowering(submodules[node.target]) |