blob: 9e9c4f34ddfbae697eade6ce411854c69a9a2d71 [file] [log] [blame]
#!/usr/bin/env python2
from caffe2.proto import caffe2_pb2, caffe2_legacy_pb2
from caffe.proto import caffe_pb2
from caffe2.python import core, utils
def _StateMeetsRule(state, rule):
"""A function that reproduces Caffe's StateMeetsRule functionality."""
if rule.HasField('phase') and rule.phase != state.phase:
return False
if rule.HasField('min_level') and state.level < rule.min_level:
return False
if rule.HasField('max_level') and state.level > rule.max_lavel:
return False
curr_stages = set(list(state.stage))
# all stages in rule.stages should be in, otherwise it's not a match.
if len(rule.stage) and any([s not in curr_stages for s in rule.stage]):
return False
# none of the stage in rule.stages should be in, otherwise it's not a match.
if len(rule.not_stage) and any([s in curr_stages for s in rule.not_stage]):
return False
# If none of the nonmatch happens, return True.
return True
def _ShouldInclude(net_state, layer):
"""A function that reproduces Caffe's inclusion and exclusion rule."""
ret = (len(layer.include) == 0)
# check exclude rules: if any exclusion is met, we shouldn't include.
ret &= not any([_StateMeetsRule(net_state, rule) for rule in layer.exclude])
if len(layer.include):
# check include rules: if any inclusion is met, we should include.
ret |= any([_StateMeetsRule(net_state, rule) for rule in layer.include])
return ret
class TranslatorRegistry(object):
registry_ = {}
@classmethod
def Register(cls, op_name):
"""A decorator for registering gradient mappings."""
def Wrapper(func):
cls.registry_[op_name] = func
return func
return Wrapper
@classmethod
def TranslateLayer(cls, layer, pretrained_blobs, is_test):
try:
caffe_ops, params = cls.registry_[layer.type](
layer, pretrained_blobs, is_test)
except KeyError:
raise KeyError('No translator registered for layer: %s yet.' %
str(layer))
if caffe_ops is None:
caffe_ops = []
if type(caffe_ops) is not list:
caffe_ops = [caffe_ops]
return caffe_ops, params
@classmethod
def TranslateModel(
cls,
caffe_net,
pretrained_net,
is_test=False,
net_state=None,
):
net_state = caffe_pb2.NetState() if net_state is None else net_state
net = caffe2_pb2.NetDef()
net.name = caffe_net.name
net_params = caffe2_pb2.TensorProtos()
if len(caffe_net.layer) == 0:
raise ValueError(
'I think something is wrong. This translation script '
'only accepts new style layers that are stored in the '
'layer field.'
)
for layer in caffe_net.layer:
if not _ShouldInclude(net_state, layer):
print('Current net state does not need layer {}'
.format(layer.name))
continue
print('Translate layer {}'.format(layer.name))
# Get pretrained one
pretrained_layers = (
[l for l in pretrained_net.layer
if l.name == layer.name] + [l
for l in pretrained_net.layers
if l.name == layer.name]
)
if len(pretrained_layers) > 1:
raise ValueError(
'huh? more than one pretrained layer of one name?')
elif len(pretrained_layers) == 1:
pretrained_blobs = [
utils.CaffeBlobToNumpyArray(blob)
for blob in pretrained_layers[0].blobs
]
else:
# No pretrained layer for the given layer name. We'll just pass
# no parameter blobs.
# print 'No pretrained layer for layer', layer.name
pretrained_blobs = []
operators, params = cls.TranslateLayer(
layer, pretrained_blobs, is_test)
net.op.extend(operators)
net_params.protos.extend(params)
return net, net_params
def TranslateModel(*args, **kwargs):
return TranslatorRegistry.TranslateModel(*args, **kwargs)
def ConvertTensorProtosToInitNet(net_params):
"""Takes the net_params returned from TranslateModel, and wrap it as an
init net that contain GivenTensorFill.
This is a very simple feature that only works with float tensors, and is
only intended to be used in an environment where you want a single
initialization file - for more complex cases, use a db to store the
parameters.
"""
init_net = caffe2_pb2.NetDef()
for tensor in net_params.protos:
if len(tensor.float_data) == 0:
raise RuntimeError(
"Only float tensors are supported in this util.")
op = core.CreateOperator(
"GivenTensorFill", [], [tensor.name],
arg=[
utils.MakeArgument("shape", list(tensor.dims)),
utils.MakeArgument("values", tensor.float_data)])
init_net.op.extend([op])
return init_net
def BaseTranslate(layer, caffe2_type):
"""A simple translate interface that maps the layer input and output."""
caffe2_op = caffe2_pb2.OperatorDef()
caffe2_op.type = caffe2_type
caffe2_op.input.extend(layer.bottom)
caffe2_op.output.extend(layer.top)
return caffe2_op
def AddArgument(op, key, value):
"""Makes an argument based on the value type."""
op.arg.extend([utils.MakeArgument(key, value)])
################################################################################
# Common translators for layers.
################################################################################
@TranslatorRegistry.Register("Input")
def TranslateInput(layer, pretrained_blobs, is_test):
return [], []
@TranslatorRegistry.Register("Data")
def TranslateData(layer, pretrained_blobs, is_test):
return [], []
# A function used in convolution, pooling and deconvolution to deal with
# conv pool specific parameters.
def _TranslateStridePadKernelHelper(param, caffe_op):
try:
if (len(param.stride) > 1 or len(param.kernel_size) > 1 or
len(param.pad) > 1):
raise NotImplementedError(
"Translator currently does not support non-conventional "
"pad/kernel/stride settings."
)
stride = param.stride[0] if len(param.stride) else 1
pad = param.pad[0] if len(param.pad) else 0
kernel = param.kernel_size[0] if len(param.kernel_size) else 0
except TypeError:
# This catches the case of a PoolingParameter, in which case we are
# having non-repeating pad, stride and kernel.
stride = param.stride
pad = param.pad
kernel = param.kernel_size
# Get stride
if param.HasField("stride_h") or param.HasField("stride_w"):
AddArgument(caffe_op, "stride_h", param.stride_h)
AddArgument(caffe_op, "stride_w", param.stride_w)
else:
AddArgument(caffe_op, "stride", stride)
# Get pad
if param.HasField("pad_h") or param.HasField("pad_w"):
if param.pad_h == param.pad_w:
AddArgument(caffe_op, "pad", param.pad_h)
else:
AddArgument(caffe_op, "pad_t", param.pad_h)
AddArgument(caffe_op, "pad_b", param.pad_h)
AddArgument(caffe_op, "pad_l", param.pad_w)
AddArgument(caffe_op, "pad_r", param.pad_w)
else:
AddArgument(caffe_op, "pad", pad)
# Get kernel
if param.HasField("kernel_h") or param.HasField("kernel_w"):
AddArgument(caffe_op, "kernel_h", param.kernel_h)
AddArgument(caffe_op, "kernel_w", param.kernel_w)
else:
AddArgument(caffe_op, "kernel", kernel)
@TranslatorRegistry.Register("Convolution")
def TranslateConv(layer, pretrained_blobs, is_test):
param = layer.convolution_param
if param.group > 1:
return TranslateConvWithGroups(layer, pretrained_blobs, is_test)
# If there is no odd things, we will basically translate it to a standard
# caffe2 op.
caffe_op = BaseTranslate(layer, "Conv")
output = caffe_op.output[0]
caffe_op.input.extend([output + '_w', output + '_b'])
_TranslateStridePadKernelHelper(param, caffe_op)
weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'
)
return caffe_op, [weight, bias]
def TranslateConvWithGroups(layer, pretrained_blobs, is_test):
print(
"Legacy warning: convolution with groups seem to be less and less " +
"popular, so we no longer have it as a first-class citizen op. " +
"Instead, we will simulate it with depth split followed by conv " +
"followed by depth concat."
)
caffe_ops = []
caffe_params = []
param = layer.convolution_param
weight, bias = pretrained_blobs
bias = bias.flatten()
n, c, h, w = weight.shape
g = param.group # group
od = int(n / g) # output dimension
if (od * g != n):
# This should not happen: n should always be divisible by g.
raise ValueError("This should not happen.")
output = layer.top[0]
# first, depth_split
depth_split_op = core.CreateOperator(
"DepthSplit",
str(layer.bottom[0]),
['_' + output + '_gconv_split_' + str(i) for i in range(g)],
split=[c for i in range(g)],
order="NCHW"
)
caffe_ops.append(depth_split_op)
# second, convolutions
for i in range(g):
# convolution layer i
this_weight = utils.NumpyArrayToCaffe2Tensor(
weight[i * od:(i + 1) * od], output + '_gconv_' + str(i) + '_w'
)
this_bias = utils.NumpyArrayToCaffe2Tensor(
bias[i * od:(i + 1) * od], output + '_gconv_' + str(i) + '_b'
)
conv_op = core.CreateOperator(
"Conv",
[depth_split_op.output[i], this_weight.name, this_bias.name],
['_' + output + '_gconv_conv_' + str(i)],
order="NCHW"
)
_TranslateStridePadKernelHelper(param, conv_op)
caffe_ops.append(conv_op)
caffe_params.extend([this_weight, this_bias])
# third, depth concat
depth_concat_op = core.CreateOperator(
"Concat",
['_' + output + '_gconv_conv_' + str(i) for i in range(g)],
[output, '_' + output + '_gconv_concat_dims'],
order="NCHW"
)
caffe_ops.append(depth_concat_op)
return caffe_ops, caffe_params
@TranslatorRegistry.Register("Deconvolution")
def TranslateDeconv(layer, pretrained_blobs, is_test):
param = layer.convolution_param
if param.group > 1:
raise NotImplementedError(
"Translator currently does not support group deconvolution."
)
caffe_op = BaseTranslate(layer, "ConvTranspose")
output = caffe_op.output[0]
_TranslateStridePadKernelHelper(param, caffe_op)
caffe_op.input.extend([output + '_w', output + '_b'])
AddArgument(caffe_op, "order", "NCHW")
weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'
)
return caffe_op, [weight, bias]
@TranslatorRegistry.Register("ReLU")
def TranslateRelu(layer, pretrained_blobs, is_test):
return BaseTranslate(layer, "Relu"), []
@TranslatorRegistry.Register("Pooling")
def TranslatePool(layer, pretrained_blobs, is_test):
param = layer.pooling_param
if param.pool == caffe_pb2.PoolingParameter.MAX:
caffe_op = BaseTranslate(layer, "MaxPool")
elif param.pool == caffe_pb2.PoolingParameter.AVE:
caffe_op = BaseTranslate(layer, "AveragePool")
_TranslateStridePadKernelHelper(param, caffe_op)
AddArgument(caffe_op, "order", "NCHW")
AddArgument(caffe_op, "legacy_pad",
caffe2_legacy_pb2.CAFFE_LEGACY_POOLING)
if param.global_pooling:
AddArgument(caffe_op, "global_pooling", 1)
return caffe_op, []
@TranslatorRegistry.Register("LRN")
def TranslateLRN(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "LRN")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_scale'])
param = layer.lrn_param
if param.norm_region != caffe_pb2.LRNParameter.ACROSS_CHANNELS:
raise ValueError(
"Does not support norm region other than across channels.")
AddArgument(caffe_op, "size", int(param.local_size))
AddArgument(caffe_op, "alpha", float(param.alpha))
AddArgument(caffe_op, "beta", float(param.beta))
AddArgument(caffe_op, "bias", float(param.k))
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, []
@TranslatorRegistry.Register("InnerProduct")
def TranslateInnerProduct(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "FC")
output = caffe_op.output[0]
caffe_op.input.extend([output + '_w', output + '_b'])
weight = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0][0, 0], output + '_w'
)
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'
)
return caffe_op, [weight, bias]
@TranslatorRegistry.Register("Dropout")
def TranslateDropout(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Dropout")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_mask'])
param = layer.dropout_param
AddArgument(caffe_op, "ratio", param.dropout_ratio)
if (is_test):
AddArgument(caffe_op, "is_test", 1)
return caffe_op, []
@TranslatorRegistry.Register("Softmax")
def TranslateSoftmax(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Softmax")
return caffe_op, []
@TranslatorRegistry.Register("SoftmaxWithLoss")
def TranslateSoftmaxWithLoss(layer, pretrained_blobs, is_test):
softmax_op = core.CreateOperator(
"Softmax", [layer.bottom[0]],
layer.bottom[0] + "_translator_autogen_softmax")
xent_op = core.CreateOperator(
"LabelCrossEntropy",
[softmax_op.output[0], layer.bottom[1]],
layer.bottom[0] + "_translator_autogen_xent")
loss_op = core.CreateOperator(
"AveragedLoss",
xent_op.output[0],
layer.top[0])
return [softmax_op, xent_op, loss_op], []
@TranslatorRegistry.Register("Accuracy")
def TranslateAccuracy(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Accuracy")
if layer.accuracy_param.top_k != 1:
print("Warning: Translation does not support Accuracy layers top_k >1.")
return caffe_op, []
@TranslatorRegistry.Register("Concat")
def TranslateConcat(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Concat")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_dims'])
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, []
@TranslatorRegistry.Register("TanH")
def TranslateTanH(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Tanh")
return caffe_op, []
@TranslatorRegistry.Register("InstanceNorm")
def TranslateInstanceNorm(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "InstanceNorm")
output = caffe_op.output[0]
weight = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0].flatten(), output + '_w')
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b')
caffe_op.input.extend([output + '_w', output + '_b'])
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, [weight, bias]
@TranslatorRegistry.Register("Eltwise")
def TranslateElementWise(layer, pretrained_blobs, is_test):
param = layer.eltwise_param
# TODO(jiayq): if we have a protobuf that uses this, lift this constraint
# and verify that we can correctly translate.
if len(param.coeff) or param.operation != 1:
raise RuntimeError("This eltwise layer is not yet supported.")
caffe_op = BaseTranslate(layer, "Sum")
return caffe_op, []
@TranslatorRegistry.Register("Scale")
def TranslateScale(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Mul")
scale_param = layer.scale_param
AddArgument(caffe_op, "axis", scale_param.axis)
AddArgument(caffe_op, "broadcast", True)
if len(caffe_op.input) == 1:
# the scale parameter is in pretrained blobs
if scale_param.num_axes != 1:
raise RuntimeError("This path has not been verified yet.")
output = caffe_op.output[0]
caffe_op.input.append(output + '_w')
weight = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0].flatten(), output + '_w')
return caffe_op, [weight]
elif len(caffe_op.input) == 2:
# TODO(jiayq): find a protobuf that uses this and verify.
raise RuntimeError("This path has not been verified yet.")
else:
raise RuntimeError("Unexpected number of inputs.")
@TranslatorRegistry.Register("Reshape")
def TranslateReshape(layer, pretrained_blobs, is_test):
caffe_op = BaseTranslate(layer, "Reshape")
caffe_op.output.append("_" + caffe_op.input[0] + "_dims")
reshape_param = layer.reshape_param
AddArgument(caffe_op, 'shape', reshape_param.shape.dim)
return caffe_op, []