| #!/usr/bin/env python2 |
| |
| from caffe2.proto import caffe2_pb2, caffe2_legacy_pb2 |
| from caffe.proto import caffe_pb2 |
| from caffe2.python import core, utils |
| |
| |
| def _StateMeetsRule(state, rule): |
| """A function that reproduces Caffe's StateMeetsRule functionality.""" |
| if rule.HasField('phase') and rule.phase != state.phase: |
| return False |
| if rule.HasField('min_level') and state.level < rule.min_level: |
| return False |
| if rule.HasField('max_level') and state.level > rule.max_lavel: |
| return False |
| curr_stages = set(list(state.stage)) |
| # all stages in rule.stages should be in, otherwise it's not a match. |
| if len(rule.stage) and any([s not in curr_stages for s in rule.stage]): |
| return False |
| # none of the stage in rule.stages should be in, otherwise it's not a match. |
| if len(rule.not_stage) and any([s in curr_stages for s in rule.not_stage]): |
| return False |
| # If none of the nonmatch happens, return True. |
| return True |
| |
| |
| def _ShouldInclude(net_state, layer): |
| """A function that reproduces Caffe's inclusion and exclusion rule.""" |
| ret = (len(layer.include) == 0) |
| # check exclude rules: if any exclusion is met, we shouldn't include. |
| ret &= not any([_StateMeetsRule(net_state, rule) for rule in layer.exclude]) |
| if len(layer.include): |
| # check include rules: if any inclusion is met, we should include. |
| ret |= any([_StateMeetsRule(net_state, rule) for rule in layer.include]) |
| return ret |
| |
| |
| class TranslatorRegistry(object): |
| registry_ = {} |
| |
| @classmethod |
| def Register(cls, op_name): |
| """A decorator for registering gradient mappings.""" |
| |
| def Wrapper(func): |
| cls.registry_[op_name] = func |
| return func |
| |
| return Wrapper |
| |
| @classmethod |
| def TranslateLayer(cls, layer, pretrained_blobs, is_test): |
| try: |
| caffe_ops, params = cls.registry_[layer.type]( |
| layer, pretrained_blobs, is_test) |
| except KeyError: |
| raise KeyError('No translator registered for layer: %s yet.' % |
| str(layer)) |
| if caffe_ops is None: |
| caffe_ops = [] |
| if type(caffe_ops) is not list: |
| caffe_ops = [caffe_ops] |
| return caffe_ops, params |
| |
| @classmethod |
| def TranslateModel( |
| cls, |
| caffe_net, |
| pretrained_net, |
| is_test=False, |
| net_state=None, |
| ): |
| net_state = caffe_pb2.NetState() if net_state is None else net_state |
| net = caffe2_pb2.NetDef() |
| net.name = caffe_net.name |
| net_params = caffe2_pb2.TensorProtos() |
| if len(caffe_net.layer) == 0: |
| raise ValueError( |
| 'I think something is wrong. This translation script ' |
| 'only accepts new style layers that are stored in the ' |
| 'layer field.' |
| ) |
| for layer in caffe_net.layer: |
| if not _ShouldInclude(net_state, layer): |
| print('Current net state does not need layer {}' |
| .format(layer.name)) |
| continue |
| print('Translate layer {}'.format(layer.name)) |
| # Get pretrained one |
| pretrained_layers = ( |
| [l for l in pretrained_net.layer |
| if l.name == layer.name] + [l |
| for l in pretrained_net.layers |
| if l.name == layer.name] |
| ) |
| if len(pretrained_layers) > 1: |
| raise ValueError( |
| 'huh? more than one pretrained layer of one name?') |
| elif len(pretrained_layers) == 1: |
| pretrained_blobs = [ |
| utils.CaffeBlobToNumpyArray(blob) |
| for blob in pretrained_layers[0].blobs |
| ] |
| else: |
| # No pretrained layer for the given layer name. We'll just pass |
| # no parameter blobs. |
| # print 'No pretrained layer for layer', layer.name |
| pretrained_blobs = [] |
| operators, params = cls.TranslateLayer( |
| layer, pretrained_blobs, is_test) |
| net.op.extend(operators) |
| net_params.protos.extend(params) |
| return net, net_params |
| |
| |
| def TranslateModel(*args, **kwargs): |
| return TranslatorRegistry.TranslateModel(*args, **kwargs) |
| |
| |
| def ConvertTensorProtosToInitNet(net_params): |
| """Takes the net_params returned from TranslateModel, and wrap it as an |
| init net that contain GivenTensorFill. |
| |
| This is a very simple feature that only works with float tensors, and is |
| only intended to be used in an environment where you want a single |
| initialization file - for more complex cases, use a db to store the |
| parameters. |
| """ |
| init_net = caffe2_pb2.NetDef() |
| for tensor in net_params.protos: |
| if len(tensor.float_data) == 0: |
| raise RuntimeError( |
| "Only float tensors are supported in this util.") |
| op = core.CreateOperator( |
| "GivenTensorFill", [], [tensor.name], |
| arg=[ |
| utils.MakeArgument("shape", list(tensor.dims)), |
| utils.MakeArgument("values", tensor.float_data)]) |
| init_net.op.extend([op]) |
| return init_net |
| |
| |
| def BaseTranslate(layer, caffe2_type): |
| """A simple translate interface that maps the layer input and output.""" |
| caffe2_op = caffe2_pb2.OperatorDef() |
| caffe2_op.type = caffe2_type |
| caffe2_op.input.extend(layer.bottom) |
| caffe2_op.output.extend(layer.top) |
| return caffe2_op |
| |
| |
| def AddArgument(op, key, value): |
| """Makes an argument based on the value type.""" |
| op.arg.extend([utils.MakeArgument(key, value)]) |
| |
| ################################################################################ |
| # Common translators for layers. |
| ################################################################################ |
| |
| |
| @TranslatorRegistry.Register("Input") |
| def TranslateInput(layer, pretrained_blobs, is_test): |
| return [], [] |
| |
| |
| @TranslatorRegistry.Register("Data") |
| def TranslateData(layer, pretrained_blobs, is_test): |
| return [], [] |
| |
| |
| # A function used in convolution, pooling and deconvolution to deal with |
| # conv pool specific parameters. |
| def _TranslateStridePadKernelHelper(param, caffe_op): |
| try: |
| if (len(param.stride) > 1 or len(param.kernel_size) > 1 or |
| len(param.pad) > 1): |
| raise NotImplementedError( |
| "Translator currently does not support non-conventional " |
| "pad/kernel/stride settings." |
| ) |
| stride = param.stride[0] if len(param.stride) else 1 |
| pad = param.pad[0] if len(param.pad) else 0 |
| kernel = param.kernel_size[0] if len(param.kernel_size) else 0 |
| except TypeError: |
| # This catches the case of a PoolingParameter, in which case we are |
| # having non-repeating pad, stride and kernel. |
| stride = param.stride |
| pad = param.pad |
| kernel = param.kernel_size |
| # Get stride |
| if param.HasField("stride_h") or param.HasField("stride_w"): |
| AddArgument(caffe_op, "stride_h", param.stride_h) |
| AddArgument(caffe_op, "stride_w", param.stride_w) |
| else: |
| AddArgument(caffe_op, "stride", stride) |
| # Get pad |
| if param.HasField("pad_h") or param.HasField("pad_w"): |
| if param.pad_h == param.pad_w: |
| AddArgument(caffe_op, "pad", param.pad_h) |
| else: |
| AddArgument(caffe_op, "pad_t", param.pad_h) |
| AddArgument(caffe_op, "pad_b", param.pad_h) |
| AddArgument(caffe_op, "pad_l", param.pad_w) |
| AddArgument(caffe_op, "pad_r", param.pad_w) |
| else: |
| AddArgument(caffe_op, "pad", pad) |
| # Get kernel |
| if param.HasField("kernel_h") or param.HasField("kernel_w"): |
| AddArgument(caffe_op, "kernel_h", param.kernel_h) |
| AddArgument(caffe_op, "kernel_w", param.kernel_w) |
| else: |
| AddArgument(caffe_op, "kernel", kernel) |
| |
| |
| @TranslatorRegistry.Register("Convolution") |
| def TranslateConv(layer, pretrained_blobs, is_test): |
| param = layer.convolution_param |
| if param.group > 1: |
| return TranslateConvWithGroups(layer, pretrained_blobs, is_test) |
| # If there is no odd things, we will basically translate it to a standard |
| # caffe2 op. |
| caffe_op = BaseTranslate(layer, "Conv") |
| output = caffe_op.output[0] |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b' |
| ) |
| return caffe_op, [weight, bias] |
| |
| |
| def TranslateConvWithGroups(layer, pretrained_blobs, is_test): |
| print( |
| "Legacy warning: convolution with groups seem to be less and less " + |
| "popular, so we no longer have it as a first-class citizen op. " + |
| "Instead, we will simulate it with depth split followed by conv " + |
| "followed by depth concat." |
| ) |
| caffe_ops = [] |
| caffe_params = [] |
| param = layer.convolution_param |
| weight, bias = pretrained_blobs |
| bias = bias.flatten() |
| n, c, h, w = weight.shape |
| g = param.group # group |
| od = int(n / g) # output dimension |
| if (od * g != n): |
| # This should not happen: n should always be divisible by g. |
| raise ValueError("This should not happen.") |
| output = layer.top[0] |
| # first, depth_split |
| depth_split_op = core.CreateOperator( |
| "DepthSplit", |
| str(layer.bottom[0]), |
| ['_' + output + '_gconv_split_' + str(i) for i in range(g)], |
| split=[c for i in range(g)], |
| order="NCHW" |
| ) |
| caffe_ops.append(depth_split_op) |
| # second, convolutions |
| for i in range(g): |
| # convolution layer i |
| this_weight = utils.NumpyArrayToCaffe2Tensor( |
| weight[i * od:(i + 1) * od], output + '_gconv_' + str(i) + '_w' |
| ) |
| this_bias = utils.NumpyArrayToCaffe2Tensor( |
| bias[i * od:(i + 1) * od], output + '_gconv_' + str(i) + '_b' |
| ) |
| conv_op = core.CreateOperator( |
| "Conv", |
| [depth_split_op.output[i], this_weight.name, this_bias.name], |
| ['_' + output + '_gconv_conv_' + str(i)], |
| order="NCHW" |
| ) |
| _TranslateStridePadKernelHelper(param, conv_op) |
| caffe_ops.append(conv_op) |
| caffe_params.extend([this_weight, this_bias]) |
| # third, depth concat |
| depth_concat_op = core.CreateOperator( |
| "Concat", |
| ['_' + output + '_gconv_conv_' + str(i) for i in range(g)], |
| [output, '_' + output + '_gconv_concat_dims'], |
| order="NCHW" |
| ) |
| caffe_ops.append(depth_concat_op) |
| return caffe_ops, caffe_params |
| |
| |
| @TranslatorRegistry.Register("Deconvolution") |
| def TranslateDeconv(layer, pretrained_blobs, is_test): |
| param = layer.convolution_param |
| if param.group > 1: |
| raise NotImplementedError( |
| "Translator currently does not support group deconvolution." |
| ) |
| caffe_op = BaseTranslate(layer, "ConvTranspose") |
| output = caffe_op.output[0] |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| AddArgument(caffe_op, "order", "NCHW") |
| weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b' |
| ) |
| return caffe_op, [weight, bias] |
| |
| |
| @TranslatorRegistry.Register("ReLU") |
| def TranslateRelu(layer, pretrained_blobs, is_test): |
| return BaseTranslate(layer, "Relu"), [] |
| |
| |
| @TranslatorRegistry.Register("Pooling") |
| def TranslatePool(layer, pretrained_blobs, is_test): |
| param = layer.pooling_param |
| if param.pool == caffe_pb2.PoolingParameter.MAX: |
| caffe_op = BaseTranslate(layer, "MaxPool") |
| elif param.pool == caffe_pb2.PoolingParameter.AVE: |
| caffe_op = BaseTranslate(layer, "AveragePool") |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| AddArgument(caffe_op, "order", "NCHW") |
| AddArgument(caffe_op, "legacy_pad", |
| caffe2_legacy_pb2.CAFFE_LEGACY_POOLING) |
| if param.global_pooling: |
| AddArgument(caffe_op, "global_pooling", 1) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("LRN") |
| def TranslateLRN(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "LRN") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_scale']) |
| param = layer.lrn_param |
| if param.norm_region != caffe_pb2.LRNParameter.ACROSS_CHANNELS: |
| raise ValueError( |
| "Does not support norm region other than across channels.") |
| AddArgument(caffe_op, "size", int(param.local_size)) |
| AddArgument(caffe_op, "alpha", float(param.alpha)) |
| AddArgument(caffe_op, "beta", float(param.beta)) |
| AddArgument(caffe_op, "bias", float(param.k)) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("InnerProduct") |
| def TranslateInnerProduct(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "FC") |
| output = caffe_op.output[0] |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| weight = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0][0, 0], output + '_w' |
| ) |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b' |
| ) |
| return caffe_op, [weight, bias] |
| |
| |
| @TranslatorRegistry.Register("Dropout") |
| def TranslateDropout(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Dropout") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_mask']) |
| param = layer.dropout_param |
| AddArgument(caffe_op, "ratio", param.dropout_ratio) |
| if (is_test): |
| AddArgument(caffe_op, "is_test", 1) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Softmax") |
| def TranslateSoftmax(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Softmax") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("SoftmaxWithLoss") |
| def TranslateSoftmaxWithLoss(layer, pretrained_blobs, is_test): |
| softmax_op = core.CreateOperator( |
| "Softmax", [layer.bottom[0]], |
| layer.bottom[0] + "_translator_autogen_softmax") |
| xent_op = core.CreateOperator( |
| "LabelCrossEntropy", |
| [softmax_op.output[0], layer.bottom[1]], |
| layer.bottom[0] + "_translator_autogen_xent") |
| loss_op = core.CreateOperator( |
| "AveragedLoss", |
| xent_op.output[0], |
| layer.top[0]) |
| return [softmax_op, xent_op, loss_op], [] |
| |
| |
| @TranslatorRegistry.Register("Accuracy") |
| def TranslateAccuracy(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Accuracy") |
| if layer.accuracy_param.top_k != 1: |
| print("Warning: Translation does not support Accuracy layers top_k >1.") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Concat") |
| def TranslateConcat(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Concat") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_dims']) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("TanH") |
| def TranslateTanH(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Tanh") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("InstanceNorm") |
| def TranslateInstanceNorm(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "InstanceNorm") |
| output = caffe_op.output[0] |
| weight = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0].flatten(), output + '_w') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b') |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [weight, bias] |
| |
| |
| @TranslatorRegistry.Register("Eltwise") |
| def TranslateElementWise(layer, pretrained_blobs, is_test): |
| param = layer.eltwise_param |
| # TODO(jiayq): if we have a protobuf that uses this, lift this constraint |
| # and verify that we can correctly translate. |
| if len(param.coeff) or param.operation != 1: |
| raise RuntimeError("This eltwise layer is not yet supported.") |
| caffe_op = BaseTranslate(layer, "Sum") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Scale") |
| def TranslateScale(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Mul") |
| scale_param = layer.scale_param |
| AddArgument(caffe_op, "axis", scale_param.axis) |
| AddArgument(caffe_op, "broadcast", True) |
| if len(caffe_op.input) == 1: |
| # the scale parameter is in pretrained blobs |
| if scale_param.num_axes != 1: |
| raise RuntimeError("This path has not been verified yet.") |
| output = caffe_op.output[0] |
| caffe_op.input.append(output + '_w') |
| weight = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0].flatten(), output + '_w') |
| return caffe_op, [weight] |
| elif len(caffe_op.input) == 2: |
| # TODO(jiayq): find a protobuf that uses this and verify. |
| raise RuntimeError("This path has not been verified yet.") |
| else: |
| raise RuntimeError("Unexpected number of inputs.") |
| |
| |
| @TranslatorRegistry.Register("Reshape") |
| def TranslateReshape(layer, pretrained_blobs, is_test): |
| caffe_op = BaseTranslate(layer, "Reshape") |
| caffe_op.output.append("_" + caffe_op.input[0] + "_dims") |
| reshape_param = layer.reshape_param |
| AddArgument(caffe_op, 'shape', reshape_param.shape.dim) |
| return caffe_op, [] |