blob: 2487905cdbf0bf39fabf8e3979ff97997ab1130c [file] [log] [blame]
import itertools
import operator
from collections.abc import Iterable
from typing import Set
import torch
from functorch.experimental import control_flow
from torch._ops import OpOverload
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx import GraphModule
from torch.fx._compatibility import compatibility
PRESERVED_META_KEYS: Set[str] = {
"val",
"stack_trace",
}
@compatibility(is_backward_compatible=False)
class SpecViolationError(Exception):
pass
@compatibility(is_backward_compatible=False)
def is_functional(op: OpOverload) -> bool:
return not op._schema.is_mutable
@compatibility(is_backward_compatible=False)
def _check_has_fake_tensor(node: torch.fx.Node) -> None:
def _check_is_fake_tensor(val):
if isinstance(val, FakeTensor):
return True
if isinstance(val, Iterable):
return all(_check_is_fake_tensor(x) for x in val)
return False
val = node.meta.get("val", None)
if val is None or not _check_is_fake_tensor(val):
raise SpecViolationError("Node.meta {} is missing val field.".format(node.name))
@compatibility(is_backward_compatible=False)
def check_valid(gm: GraphModule) -> None: # noqa: C901
for node in gm.graph.nodes:
# TODO(T140410192): should have fake tensor for all dialects
if node.op in {"call_module", "call_method"}:
raise SpecViolationError(
"call_module is not valid: got a class '{}' ".format(node.target),
)
if node.op == "call_function":
_check_has_fake_tensor(node)
op_name = (
node.target.name
if hasattr(node.target, "name")
else node.target.__name__
)
is_builtin_func = node.target in [
'while_loop',
operator.getitem,
'cond',
control_flow.cond,
control_flow.map,
]
if not isinstance(node.target, OpOverload) and not is_builtin_func:
raise SpecViolationError(
"Operator '{}' is not a registered Op".format(op_name),
)
# All ops functional
if not is_builtin_func and not is_functional(node.target):
raise SpecViolationError(
f"operator '{op_name}' is not functional"
)
if isinstance(node.target, OpOverload):
# Check preserved metadata
for meta in PRESERVED_META_KEYS:
if node.meta.get(meta, None) is None:
raise SpecViolationError(
f"node {node} is missing metadata {meta}"
)
@compatibility(is_backward_compatible=False)
def is_valid(gm: GraphModule) -> bool:
try:
check_valid(gm)
return True
except SpecViolationError:
return False
@compatibility(is_backward_compatible=False)
def _check_tensors_are_contiguous(gm: GraphModule) -> None:
# Tensors be of contiguous format
for name, param in itertools.chain(gm.named_parameters(), gm.named_buffers()):
if isinstance(param, torch.Tensor):
if not param.is_contiguous():
raise SpecViolationError(
f"Tensors in Aten dialect must be contiguous, {name} is not contiguous"
)
@compatibility(is_backward_compatible=False)
def check_valid_aten_dialect(gm: GraphModule) -> None:
"""Raises exception if gm is not in aten dialect.
Args:
gm: GraphModule
"""
# need to be first valid
check_valid(gm)
# Operators be aten cannonical
for n in gm.graph.nodes:
if n.op == "call_function" and isinstance(n.target, OpOverload):
if (
torch.Tag.core not in n.target.tags # type: ignore[attr-defined]
and torch.Tag.view_copy not in n.target.tags # type: ignore[attr-defined]
):
# NOTE(qihan): whether view_copy operators are marked as canonical is still under
# discussion.
raise SpecViolationError(
"Operator {}.{} is not Aten Canonical.".format(
n.target.__module__, n.target.__name__
)
)
_check_tensors_are_contiguous(gm)
@compatibility(is_backward_compatible=False)
def is_valid_aten_dialect(gm: GraphModule) -> bool:
try:
check_valid_aten_dialect(gm)
return True
except SpecViolationError:
return False