| #include "THCUNN.h" |
| #include "common.h" |
| |
| template <typename Dtype, bool COUNT_INCLUDE_PAD> |
| __global__ void AvePoolForward(const int nthreads, |
| const Dtype* const bottom_data, const int num, const int channels, |
| const int height, const int width, const int pooled_height, |
| const int pooled_width, const int kernel_h, const int kernel_w, |
| const int stride_h, const int stride_w, const int pad_h, const int pad_w, |
| Dtype* const top_data) { |
| CUDA_KERNEL_LOOP(index, nthreads) { |
| const int pw = index % pooled_width; |
| const int ph = (index / pooled_width) % pooled_height; |
| const int c = (index / pooled_width / pooled_height) % channels; |
| const int n = index / pooled_width / pooled_height / channels; |
| int hstart = ph * stride_h - pad_h; |
| int wstart = pw * stride_w - pad_w; |
| int hend = min(hstart + kernel_h, height + pad_h); |
| int wend = min(wstart + kernel_w, width + pad_w); |
| const int pool_size = (hend - hstart) * (wend - wstart); |
| hstart = max(hstart, 0); |
| wstart = max(wstart, 0); |
| hend = min(hend, height); |
| wend = min(wend, width); |
| Dtype aveval = 0; |
| const Dtype* const bottom_slice = bottom_data + (n * channels + c) * height * width; |
| for (int h = hstart; h < hend; ++h) { |
| for (int w = wstart; w < wend; ++w) { |
| aveval += bottom_slice[h * width + w]; |
| } |
| } |
| if(COUNT_INCLUDE_PAD) |
| top_data[index] = aveval / pool_size; |
| else |
| top_data[index] = aveval / ((hend - hstart) * (wend - wstart)); |
| } |
| } |
| |
| |
| void THNN_CudaSpatialAveragePooling_updateOutput(THCState *state, THCudaTensor *input, THCudaTensor *output, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode, bool count_include_pad) |
| { |
| THCUNN_assertSameGPU(state, 2, input, output); |
| THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch) tensor expected"); |
| |
| long nInputCols, nInputRows, nInputPlane, batchSize; |
| long nOutputCols, nOutputRows; |
| |
| if (input->nDimension == 3) { |
| nInputCols = input->size[2]; |
| nInputRows = input->size[1]; |
| nInputPlane = input->size[0]; |
| batchSize = 1; |
| } |
| else |
| { |
| nInputCols = input->size[3]; |
| nInputRows = input->size[2]; |
| nInputPlane = input->size[1]; |
| batchSize = input->size[0]; |
| } |
| |
| THArgCheck(nInputCols >= kW - 2*padW && nInputRows >= kH - 2*padH, 2, "input image smaller than kernel size"); |
| THArgCheck(kW/2 >= padW && kH/2 >= padH, 2, "pad should be smaller than half of kernel size"); |
| |
| if(ceil_mode) { |
| nOutputCols = ceil(float(nInputCols - kW + 2*padW) / float(dW)) + 1; |
| nOutputRows = ceil(float(nInputRows - kH + 2*padH) / float(dH)) + 1; |
| } |
| else { |
| nOutputCols = floor(float(nInputCols - kW + 2*padW) / float(dW)) + 1; |
| nOutputRows = floor(float(nInputRows - kH + 2*padH) / float(dH)) + 1; |
| } |
| if (padW || padH) |
| { |
| // ensure that the last pooling starts inside the image |
| // needed to avoid problems in ceil mode |
| if ((nOutputRows - 1)*dH >= nInputRows + padH) |
| --nOutputRows; |
| if ((nOutputCols - 1)*dW >= nInputCols + padW) |
| --nOutputCols; |
| } |
| |
| input = THCudaTensor_newContiguous(state, input); |
| float* input_data = THCudaTensor_data(state, input); |
| |
| THCudaTensor_resize4d(state, output, batchSize, nInputPlane, nOutputRows, nOutputCols); |
| |
| float* output_data = THCudaTensor_data(state, output); |
| |
| int count = THCudaTensor_nElement(state, output); |
| |
| if(count_include_pad) |
| AvePoolForward<float, true> |
| <<<GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>( |
| count, input_data, |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, output_data); |
| else |
| AvePoolForward<float, false> |
| <<<GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>( |
| count, input_data, |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, output_data); |
| THCudaCheck(cudaGetLastError()); |
| |
| if(input->nDimension == 3) |
| THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols); |
| |
| THCudaTensor_free(state, input); |
| |
| } |
| |
| template <typename Dtype, bool COUNT_INCLUDE_PAD> |
| __global__ void AvePoolBackward(const int nthreads, const Dtype* const top_diff, |
| const int num, const int channels, const int height, |
| const int width, const int pooled_height, const int pooled_width, |
| const int kernel_h, const int kernel_w, const int stride_h, |
| const int stride_w, const int pad_h, const int pad_w, |
| Dtype* const bottom_diff) { |
| CUDA_KERNEL_LOOP(index, nthreads) { |
| // find out the local index |
| // find out the local offset |
| const int w = index % width + pad_w; |
| const int h = (index / width) % height + pad_h; |
| const int c = (index / width / height) % channels; |
| const int n = index / width / height / channels; |
| const int phstart = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; |
| const int phend = min(h / stride_h + 1, pooled_height); |
| const int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1; |
| const int pwend = min(w / stride_w + 1, pooled_width); |
| Dtype gradient = 0; |
| const Dtype* const top_diff_slice = |
| top_diff + (n * channels + c) * pooled_height * pooled_width; |
| for (int ph = phstart; ph < phend; ++ph) { |
| for (int pw = pwstart; pw < pwend; ++pw) { |
| // figure out the pooling size |
| int hstart = ph * stride_h - pad_h; |
| int wstart = pw * stride_w - pad_w; |
| int hend = min(hstart + kernel_h, height + pad_h); |
| int wend = min(wstart + kernel_w, width + pad_w); |
| int pool_size = (hend - hstart) * (wend - wstart); |
| hstart = max(hstart, 0); |
| wstart = max(wstart, 0); |
| hend = min(hend, height); |
| wend = min(wend, width); |
| if(COUNT_INCLUDE_PAD) |
| gradient += top_diff_slice[ph * pooled_width + pw] / pool_size; |
| else |
| gradient += top_diff_slice[ph * pooled_width + pw] / ((hend - hstart) * (wend - wstart)); |
| } |
| } |
| bottom_diff[index] = gradient; |
| } |
| } |
| |
| void THNN_CudaSpatialAveragePooling_updateGradInput(THCState *state, THCudaTensor *input, THCudaTensor *gradOutput, THCudaTensor *gradInput, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode, bool count_include_pad) |
| { |
| THCUNN_assertSameGPU(state, 3, input, gradOutput, gradInput); |
| |
| input = THCudaTensor_newContiguous(state, input); |
| gradOutput = THCudaTensor_newContiguous(state, gradOutput); |
| |
| long nInputCols, nInputRows, nInputPlane, batchSize; |
| long nOutputCols, nOutputRows; |
| |
| if (input->nDimension == 3) { |
| nInputCols = input->size[2]; |
| nInputRows = input->size[1]; |
| nInputPlane = input->size[0]; |
| batchSize = 1; |
| } |
| else |
| { |
| nInputCols = input->size[3]; |
| nInputRows = input->size[2]; |
| nInputPlane = input->size[1]; |
| batchSize = input->size[0]; |
| } |
| |
| if(ceil_mode) { |
| nOutputCols = ceil(float(nInputCols - kW + 2*padW) / float(dW)) + 1; |
| nOutputRows = ceil(float(nInputRows - kH + 2*padH) / float(dH)) + 1; |
| } |
| else { |
| nOutputCols = floor(float(nInputCols - kW + 2*padW) / float(dW)) + 1; |
| nOutputRows = floor(float(nInputRows - kH + 2*padH) / float(dH)) + 1; |
| } |
| if (padW || padH) |
| { |
| // ensure that the last pooling starts inside the image |
| // needed to avoid problems in ceil mode |
| if ((nOutputRows - 1)*dH >= nInputRows + padH) |
| --nOutputRows; |
| if ((nOutputCols - 1)*dW >= nInputCols + padW) |
| --nOutputCols; |
| } |
| |
| THCudaTensor_resizeAs(state, gradInput, input); |
| |
| int count = THCudaTensor_nElement(state, input); |
| |
| if(count_include_pad) |
| AvePoolBackward<float, true> |
| <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>> |
| (count, |
| THCudaTensor_data(state, gradOutput), |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, |
| THCudaTensor_data(state, gradInput)); |
| else |
| AvePoolBackward<float, false> |
| <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>> |
| (count, |
| THCudaTensor_data(state, gradOutput), |
| batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols, |
| kH, kW, dH, dW, padH, padW, |
| THCudaTensor_data(state, gradInput)); |
| THCudaCheck(cudaGetLastError()); |
| |
| // clean |
| THCudaTensor_free(state, input); |
| THCudaTensor_free(state, gradOutput); |
| } |
| |