blob: 71280339c40209bc558fa37f24477bfdb5bd3a87 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
)
class Split(ModelLayer):
def __init__(self, model, input_record, num_splits, axis=1,
name='split', **kwargs):
super(Split, self).__init__(model, name, input_record, **kwargs)
self.axis = axis
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
axis -= 1
assert axis >= 0
assert isinstance(input_record, schema.Scalar),\
"Incorrect input type. Excpected Scalar, but received: {0}".\
format(input_record)
input_shape = input_record.field_type().shape
assert len(input_shape) >= axis
assert input_shape[axis] % num_splits == 0
output_shape = list(input_shape)
output_shape[axis] = int(output_shape[axis] / num_splits)
data_type = input_record.field_type().base
output_scalars = [
schema.Scalar(
(data_type, output_shape),
core.ScopedBlobReference(
model.net.NextName(self.name + '_output_{}'.format(i))))
for i in range(num_splits)
]
self.output_schema = schema.Tuple(*output_scalars)
def add_ops(self, net):
net.Split(
self.input_record.field_blobs(),
self.output_schema.field_blobs(),
axis=self.axis,
)