blob: eb09eefe0e2bc3e7e7def08b5d6639096e1ab5ed [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
IdList,
IdScoreList,
LayerParameter,
ModelLayer,
)
import functools
import math
import numpy as np
import operator
class SparseLookup(ModelLayer):
_supported_reducers = ['PositionWeighted', 'LogMeanExp', 'LogSumExp', 'Max',
'Mean', 'Sum']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
# TODO Add some asserts about input type
assert reducer in self._supported_reducers, "Unsupported reducer: {}".\
format(reducer)
self.reducer = reducer
assert input_record.items.metadata is not None,\
"Features without metadata are not supported"
input_dim = input_record.items.metadata.categorical_limit
assert input_dim is not None, "Unbounded features are not supported"
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
core.ScopedBlobReference(model.net.NextName(self.name + '_output')))
if self.request_only:
schema.attach_metadata_to_scalars(
self.output_schema,
schema.Metadata(
categorical_limit=None,
expected_value=None,
feature_specs=schema.FeatureSpec(
feature_is_request_only=True
)
)
)
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = core.ScopedBlobReference(model.net.NextName(self.name + "_w"))
self.params.append(
LayerParameter(
parameter=self.w,
initializer=core.CreateOperator(self.weight_init[0],
[],
self.w,
shape=self.shape,
**self.weight_init[1]
),
optimizer=weight_optim
))
if reducer == 'PositionWeighted':
self.pos_w = core.ScopedBlobReference(
model.net.NextName(self.name + "_pos_w"))
self.params.append(
LayerParameter(
parameter=self.pos_w,
initializer=core.CreateOperator('ConstantFill',
[],
self.pos_w,
shape=[input_dim, ],
value=1.0
),
optimizer=weight_optim
))
def get_memory_usage(self):
return functools.reduce(operator.mul, self.shape) * 4
def add_ops(self, net):
if schema.equal_schemas(self.input_record, IdList):
if self.reducer == 'Sum':
net.SparseLengthsSum(
[
self.w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
elif self.reducer == 'PositionWeighted':
inc_seq = net.LengthsRangeFill(
[self.input_record.lengths()],
self.input_record.lengths() + '_seq'
)
gather_pos_w = net.Gather(
[self.pos_w, inc_seq], self.pos_w + '_gather')
net.SparseLengthsWeightedSum(
[
self.w,
gather_pos_w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
grad_on_weights=1
)
else:
table_rows = net.Gather([self.w, self.input_record.keys()])
segment_ids = net.LengthsToSegmentIds(
self.input_record.lengths())
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segment_ids],
self.output_schema.field_blobs()
)
elif schema.equal_schemas(self.input_record, IdScoreList):
if self.reducer == 'Sum':
net.SparseLengthsWeightedSum(
[
self.w,
self.input_record.values(),
self.input_record.keys(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
else:
raise "Only Sum is supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
else:
raise "Unsupported input type {0}".format(self.input_record)