blob: 174376a5ef0ffbff70b6eb947a5ad74860054486 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
)
import numpy as np
class Concat(ModelLayer):
def __init__(self, model, input_record, axis=1,
name='concat', **kwargs):
super(Concat, self).__init__(model, name, input_record, **kwargs)
self.axis = axis
assert isinstance(input_record, schema.Struct),\
"Incorrect input type. Excpected Struct, but received: {0}".\
format(input_record)
shapes = []
for field_name, field_type in input_record.fields.items():
assert isinstance(field_type, schema.Scalar),\
"Incorrect input type. Excpected Scalar, but received: {0}".\
format(field_type)
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
assert len(field_type.field_type().shape) >= axis,\
"Concat expects that limited dimensions of the input tensor"
shapes.append(list(field_type.field_type().shape))
concat_dim = 0
for shape in shapes:
concat_dim += shape[axis - 1]
shape[axis - 1] = 0
assert shape == shapes[0],\
"Shapes {0} and {1} are not compatible for Concat".\
format(shape, shapes[0])
output_dims = shapes[0]
output_dims[axis - 1] = concat_dim
self.output_schema = schema.Scalar(
(np.float32, output_dims),
core.ScopedBlobReference(model.net.NextName(self.name + '_output')))
def add_ops(self, net):
net.Concat(
self.input_record.field_blobs(),
[
self.output_schema.field_blobs()[0],
net.NextName(str("_" + self.output_schema.field_blobs()[0] +
"_concat_dims"))],
axis=self.axis,
)