| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import core, schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| import numpy as np |
| |
| |
| class Concat(ModelLayer): |
| |
| def __init__(self, model, input_record, axis=1, |
| name='concat', **kwargs): |
| super(Concat, self).__init__(model, name, input_record, **kwargs) |
| self.axis = axis |
| assert isinstance(input_record, schema.Struct),\ |
| "Incorrect input type. Excpected Struct, but received: {0}".\ |
| format(input_record) |
| |
| shapes = [] |
| for field_name, field_type in input_record.fields.items(): |
| assert isinstance(field_type, schema.Scalar),\ |
| "Incorrect input type. Excpected Scalar, but received: {0}".\ |
| format(field_type) |
| # Assume that first dimension is batch, so actual axis in shape is |
| # axis - 1 |
| assert len(field_type.field_type().shape) >= axis,\ |
| "Concat expects that limited dimensions of the input tensor" |
| shapes.append(list(field_type.field_type().shape)) |
| |
| concat_dim = 0 |
| for shape in shapes: |
| concat_dim += shape[axis - 1] |
| shape[axis - 1] = 0 |
| assert shape == shapes[0],\ |
| "Shapes {0} and {1} are not compatible for Concat".\ |
| format(shape, shapes[0]) |
| output_dims = shapes[0] |
| output_dims[axis - 1] = concat_dim |
| |
| self.output_schema = schema.Scalar( |
| (np.float32, output_dims), |
| core.ScopedBlobReference(model.net.NextName(self.name + '_output'))) |
| |
| def add_ops(self, net): |
| net.Concat( |
| self.input_record.field_blobs(), |
| [ |
| self.output_schema.field_blobs()[0], |
| net.NextName(str("_" + self.output_schema.field_blobs()[0] + |
| "_concat_dims"))], |
| axis=self.axis, |
| ) |