| from .module import Module |
| from typing import Optional |
| from ... import Tensor, _size |
| from ..common_types import _size_any_t, _maybe_indices_t, _size_1_t, _size_2_t, _size_3_t, _ratio_3_t, _ratio_2_t |
| |
| |
| class _MaxPoolNd(Module): |
| return_indices: bool = ... |
| ceil_mode: bool = ... |
| |
| def __init__(self, kernel_size: _size_any_t, stride: Optional[_size_any_t] = ..., padding: _size_any_t = ..., |
| dilation: _size_any_t = ..., return_indices: bool = ..., ceil_mode: bool = ...) -> None: ... |
| |
| |
| class MaxPool1d(_MaxPoolNd): |
| kernel_size: _size_1_t = ... |
| stride: _size_1_t = ... |
| padding: _size_1_t = ... |
| dilation: _size_1_t = ... |
| |
| def forward(self, input: Tensor) -> _maybe_indices_t: ... |
| |
| |
| class MaxPool2d(_MaxPoolNd): |
| kernel_size: _size_2_t = ... |
| stride: _size_2_t = ... |
| padding: _size_2_t = ... |
| dilation: _size_2_t = ... |
| |
| def forward(self, input: Tensor) -> _maybe_indices_t: ... |
| |
| |
| class MaxPool3d(_MaxPoolNd): |
| kernel_size: _size_3_t = ... |
| stride: _size_3_t = ... |
| padding: _size_3_t = ... |
| dilation: _size_3_t = ... |
| |
| def forward(self, input: Tensor) -> _maybe_indices_t: ... |
| |
| |
| class _MaxUnpoolNd(Module): |
| ... |
| |
| |
| class MaxUnpool1d(_MaxUnpoolNd): |
| kernel_size: _size_1_t = ... |
| stride: _size_1_t = ... |
| padding: _size_1_t = ... |
| |
| def __init__(self, kernel_size: _size_1_t, stride: Optional[_size_1_t] = ..., padding: _size_1_t = ...) -> None: ... |
| |
| def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ... |
| |
| |
| class MaxUnpool2d(_MaxUnpoolNd): |
| kernel_size: _size_2_t = ... |
| stride: _size_2_t = ... |
| padding: _size_2_t = ... |
| |
| def __init__(self, kernel_size: _size_2_t, stride: Optional[_size_2_t] = ..., padding: _size_2_t = ...) -> None: ... |
| |
| def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ... |
| |
| |
| class MaxUnpool3d(_MaxUnpoolNd): |
| kernel_size: _size_3_t = ... |
| stride: _size_3_t = ... |
| padding: _size_3_t = ... |
| |
| def __init__(self, kernel_size: _size_3_t, stride: Optional[_size_3_t] = ..., padding: _size_3_t = ...) -> None: ... |
| |
| def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ... |
| |
| |
| class _AvgPoolNd(Module): |
| ... |
| |
| |
| class AvgPool1d(_AvgPoolNd): |
| kernel_size: _size_1_t = ... |
| stride: _size_1_t = ... |
| padding: _size_1_t = ... |
| ceil_mode: bool = ... |
| count_include_pad: bool = ... |
| |
| def __init__(self, kernel_size: _size_1_t, stride: Optional[_size_1_t] = ..., padding: _size_1_t = ..., |
| ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AvgPool2d(_AvgPoolNd): |
| kernel_size: _size_2_t = ... |
| stride: _size_2_t = ... |
| padding: _size_2_t = ... |
| ceil_mode: bool = ... |
| count_include_pad: bool = ... |
| |
| def __init__(self, kernel_size: _size_2_t, stride: Optional[_size_2_t] = ..., padding: _size_2_t = ..., |
| ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AvgPool3d(_AvgPoolNd): |
| kernel_size: _size_3_t = ... |
| stride: _size_3_t = ... |
| padding: _size_3_t = ... |
| ceil_mode: bool = ... |
| count_include_pad: bool = ... |
| |
| def __init__(self, kernel_size: _size_3_t, stride: Optional[_size_3_t] = ..., padding: _size_3_t = ..., |
| ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class FractionalMaxPool2d(Module): |
| kernel_size: _size_2_t = ... |
| return_indices: bool = ... |
| output_size: _size_2_t = ... |
| output_ratio: _ratio_2_t = ... |
| |
| def __init__(self, kernel_size: _size_2_t, output_size: Optional[_size_2_t] = ..., |
| output_ratio: Optional[_ratio_2_t] = ..., return_indices: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> _maybe_indices_t: ... |
| |
| |
| class FractionalMaxPool3d(Module): |
| kernel_size: _size_3_t = ... |
| return_indices: bool = ... |
| output_size: _size_3_t = ... |
| output_ratio: _ratio_3_t = ... |
| |
| def __init__(self, kernel_size: _size_3_t, output_size: Optional[_size_3_t] = ..., |
| output_ratio: Optional[_ratio_3_t] = ..., return_indices: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor) -> _maybe_indices_t: ... |
| |
| |
| class _LPPoolNd(Module): |
| norm_type: float = ... |
| ceil_mode: bool = ... |
| |
| def __init__(self, norm_type: float, kernel_size: _size_any_t, stride: Optional[_size_any_t] = ..., |
| ceil_mode: bool = ...) -> None: ... |
| |
| |
| class LPPool1d(_LPPoolNd): |
| kernel_size: _size_1_t = ... |
| stride: _size_1_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class LPPool2d(_LPPoolNd): |
| kernel_size: _size_2_t = ... |
| stride: _size_2_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class _AdaptiveMaxPoolNd(Module): |
| return_indices: bool = ... |
| |
| def __init__(self, output_size: _size_any_t, return_indices: bool = ...) -> None: ... |
| |
| |
| class AdaptiveMaxPool1d(_AdaptiveMaxPoolNd): |
| output_size: _size_1_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AdaptiveMaxPool2d(_AdaptiveMaxPoolNd): |
| output_size: _size_2_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AdaptiveMaxPool3d(_AdaptiveMaxPoolNd): |
| output_size: _size_3_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class _AdaptiveAvgPoolNd(Module): |
| def __init__(self, output_size: _size_any_t) -> None: ... |
| |
| |
| class AdaptiveAvgPool1d(_AdaptiveAvgPoolNd): |
| output_size: _size_1_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AdaptiveAvgPool2d(_AdaptiveAvgPoolNd): |
| output_size: _size_2_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| |
| class AdaptiveAvgPool3d(_AdaptiveAvgPoolNd): |
| output_size: _size_3_t = ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |