blob: 52d1564553b1d4bc95098f25e977b8cce3eaa833 [file] [log] [blame]
from .module import Module
from typing import Optional
from ... import Tensor, _size
from ..common_types import _size_any_t, _maybe_indices_t, _size_1_t, _size_2_t, _size_3_t, _ratio_3_t, _ratio_2_t
class _MaxPoolNd(Module):
return_indices: bool = ...
ceil_mode: bool = ...
def __init__(self, kernel_size: _size_any_t, stride: Optional[_size_any_t] = ..., padding: _size_any_t = ...,
dilation: _size_any_t = ..., return_indices: bool = ..., ceil_mode: bool = ...) -> None: ...
class MaxPool1d(_MaxPoolNd):
kernel_size: _size_1_t = ...
stride: _size_1_t = ...
padding: _size_1_t = ...
dilation: _size_1_t = ...
def forward(self, input: Tensor) -> _maybe_indices_t: ...
class MaxPool2d(_MaxPoolNd):
kernel_size: _size_2_t = ...
stride: _size_2_t = ...
padding: _size_2_t = ...
dilation: _size_2_t = ...
def forward(self, input: Tensor) -> _maybe_indices_t: ...
class MaxPool3d(_MaxPoolNd):
kernel_size: _size_3_t = ...
stride: _size_3_t = ...
padding: _size_3_t = ...
dilation: _size_3_t = ...
def forward(self, input: Tensor) -> _maybe_indices_t: ...
class _MaxUnpoolNd(Module):
...
class MaxUnpool1d(_MaxUnpoolNd):
kernel_size: _size_1_t = ...
stride: _size_1_t = ...
padding: _size_1_t = ...
def __init__(self, kernel_size: _size_1_t, stride: Optional[_size_1_t] = ..., padding: _size_1_t = ...) -> None: ...
def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ...
class MaxUnpool2d(_MaxUnpoolNd):
kernel_size: _size_2_t = ...
stride: _size_2_t = ...
padding: _size_2_t = ...
def __init__(self, kernel_size: _size_2_t, stride: Optional[_size_2_t] = ..., padding: _size_2_t = ...) -> None: ...
def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ...
class MaxUnpool3d(_MaxUnpoolNd):
kernel_size: _size_3_t = ...
stride: _size_3_t = ...
padding: _size_3_t = ...
def __init__(self, kernel_size: _size_3_t, stride: Optional[_size_3_t] = ..., padding: _size_3_t = ...) -> None: ...
def forward(self, input: Tensor, indices: Tensor, output_size: Optional[_size] = ...) -> Tensor: ...
class _AvgPoolNd(Module):
...
class AvgPool1d(_AvgPoolNd):
kernel_size: _size_1_t = ...
stride: _size_1_t = ...
padding: _size_1_t = ...
ceil_mode: bool = ...
count_include_pad: bool = ...
def __init__(self, kernel_size: _size_1_t, stride: Optional[_size_1_t] = ..., padding: _size_1_t = ...,
ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class AvgPool2d(_AvgPoolNd):
kernel_size: _size_2_t = ...
stride: _size_2_t = ...
padding: _size_2_t = ...
ceil_mode: bool = ...
count_include_pad: bool = ...
def __init__(self, kernel_size: _size_2_t, stride: Optional[_size_2_t] = ..., padding: _size_2_t = ...,
ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class AvgPool3d(_AvgPoolNd):
kernel_size: _size_3_t = ...
stride: _size_3_t = ...
padding: _size_3_t = ...
ceil_mode: bool = ...
count_include_pad: bool = ...
def __init__(self, kernel_size: _size_3_t, stride: Optional[_size_3_t] = ..., padding: _size_3_t = ...,
ceil_mode: bool = ..., count_include_pad: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class FractionalMaxPool2d(Module):
kernel_size: _size_2_t = ...
return_indices: bool = ...
output_size: _size_2_t = ...
output_ratio: _ratio_2_t = ...
def __init__(self, kernel_size: _size_2_t, output_size: Optional[_size_2_t] = ...,
output_ratio: Optional[_ratio_2_t] = ..., return_indices: bool = ...) -> None: ...
def forward(self, input: Tensor) -> _maybe_indices_t: ...
class FractionalMaxPool3d(Module):
kernel_size: _size_3_t = ...
return_indices: bool = ...
output_size: _size_3_t = ...
output_ratio: _ratio_3_t = ...
def __init__(self, kernel_size: _size_3_t, output_size: Optional[_size_3_t] = ...,
output_ratio: Optional[_ratio_3_t] = ..., return_indices: bool = ...) -> None: ...
def forward(self, input: Tensor) -> _maybe_indices_t: ...
class _LPPoolNd(Module):
norm_type: float = ...
ceil_mode: bool = ...
def __init__(self, norm_type: float, kernel_size: _size_any_t, stride: Optional[_size_any_t] = ...,
ceil_mode: bool = ...) -> None: ...
class LPPool1d(_LPPoolNd):
kernel_size: _size_1_t = ...
stride: _size_1_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class LPPool2d(_LPPoolNd):
kernel_size: _size_2_t = ...
stride: _size_2_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class _AdaptiveMaxPoolNd(Module):
return_indices: bool = ...
def __init__(self, output_size: _size_any_t, return_indices: bool = ...) -> None: ...
class AdaptiveMaxPool1d(_AdaptiveMaxPoolNd):
output_size: _size_1_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class AdaptiveMaxPool2d(_AdaptiveMaxPoolNd):
output_size: _size_2_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class AdaptiveMaxPool3d(_AdaptiveMaxPoolNd):
output_size: _size_3_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class _AdaptiveAvgPoolNd(Module):
def __init__(self, output_size: _size_any_t) -> None: ...
class AdaptiveAvgPool1d(_AdaptiveAvgPoolNd):
output_size: _size_1_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class AdaptiveAvgPool2d(_AdaptiveAvgPoolNd):
output_size: _size_2_t = ...
def forward(self, input: Tensor) -> Tensor: ...
class AdaptiveAvgPool3d(_AdaptiveAvgPoolNd):
output_size: _size_3_t = ...
def forward(self, input: Tensor) -> Tensor: ...