blob: 522df17e87bc236697b7ace7e99211170aa7d494 [file] [log] [blame]
"""
Utils shared by different modes of quantization (eager/graph)
"""
import warnings
import functools
import torch
from torch.ao.quantization.quant_type import QuantType, quant_type_to_str
from typing import Tuple, Any, Union, Callable
# Type for fusion patterns, it can be more complicated than the following actually,
# see pattern.md for docs
# TODO: not sure if typing supports recursive data types
Pattern = Union[Callable, Tuple[Callable, Callable], Tuple[Callable, Tuple[Callable, Callable]], Any]
def get_combined_dict(default_dict, additional_dict):
d = default_dict.copy()
d.update(additional_dict)
return d
def is_per_tensor(qscheme):
return qscheme == torch.per_tensor_affine or \
qscheme == torch.per_tensor_symmetric
def is_per_channel(qscheme):
return qscheme in [torch.per_channel_affine,
torch.per_channel_affine_float_qparams,
torch.per_channel_symmetric]
def getattr_from_fqn(obj: Any, fqn: str) -> Any:
"""
Given an obj and a fqn such as "foo.bar.baz", returns gm.foo.bar.baz.
"""
return functools.reduce(getattr, fqn.split("."), obj)
def get_qparam_dict(observer_or_fake_quant):
qscheme = observer_or_fake_quant.qscheme if hasattr(observer_or_fake_quant, "qscheme") else None
dtype = observer_or_fake_quant.dtype
qparams = {"qscheme": qscheme, "dtype": dtype}
if not qscheme:
return qparams
if is_per_tensor(qscheme):
qscheme = torch.per_tensor_affine
elif is_per_channel(qscheme):
# change symmetric to affine since we do not have symmetric
# quantized Tensor
if qscheme == torch.per_channel_symmetric:
qscheme = torch.per_channel_affine
qparams["axis"] = observer_or_fake_quant.ch_axis
else:
raise RuntimeError(f"Unrecognized qscheme: {qscheme}")
# update qscheme, since we don't have symmetric quant qscheme
# in quantized Tensor
qparams["qscheme"] = qscheme
scale, zero_point = observer_or_fake_quant.calculate_qparams()
qparams["scale"] = scale
qparams["zero_point"] = zero_point
return qparams
def get_swapped_custom_module_class(custom_module, custom_module_class_mapping, qconfig):
""" Get the observed/quantized custom module class that we need
to swap `custom_module` to
Input:
custom_module: input, can be an instance of either a float or observed custom module
custom_module_class_mapping: the float to observed or observed to quantized custom module class mapping
qconfig: qconfig configured for the custom module
Output:
corresponding observed/quantized custom module class for input custom module instance
"""
quant_type = get_quant_type(qconfig)
quant_type_str = quant_type_to_str(quant_type)
class_mapping = custom_module_class_mapping.get(quant_type_str, {})
assert type(custom_module) in class_mapping, "did not find corresponding observed " \
"module class for {} in mapping: {}".format(type(custom_module), class_mapping)
return class_mapping[type(custom_module)]
def activation_dtype(qconfig):
assert qconfig is not None
activation = qconfig.activation()
return activation.dtype
def weight_dtype(qconfig):
assert qconfig is not None
weight = qconfig.weight()
return weight.dtype
def activation_is_statically_quantized(qconfig):
""" Given a qconfig, decide if the activation needs to be
quantized or not, this includes quantizing to quint8, qint8 and float16
"""
return activation_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
def activation_is_int8_quantized(qconfig):
""" Given a qconfig, decide if the activation needs to be
quantized to int8 or not, this includes quantizing to quint8, qint8
"""
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
def weight_is_quantized(qconfig):
""" Given a qconfig, decide if the weight needs to be
quantized or not
"""
return weight_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
def weight_is_statically_quantized(qconfig):
""" Given a qconfig, decide if the weight needs to be statically
quantized or not
"""
return weight_dtype(qconfig) in [torch.quint8, torch.qint8]
def get_qconfig_dtypes(qconfig):
r""" returns the qconfig tuple for qconfig:
(activation_dtype, weight_dtype, activation_compute_dtype)
"""
assert qconfig is not None
activation = qconfig.activation()
weight = qconfig.weight()
compute_dtype = activation.compute_dtype if hasattr(activation, 'compute_dtype') else None
return (activation.dtype, weight.dtype, compute_dtype)
def get_quant_type(qconfig):
assert qconfig is not None
activation = qconfig.activation()
weight = qconfig.weight()
static_dtypes = [torch.quint8, torch.qint8]
if weight.dtype in static_dtypes:
if activation.dtype in static_dtypes:
return QuantType.STATIC
elif hasattr(activation, 'compute_dtype') and activation.compute_dtype in static_dtypes:
return QuantType.DYNAMIC
else:
return QuantType.WEIGHT_ONLY
if weight.dtype == torch.float16:
if activation.dtype == torch.float:
return QuantType.DYNAMIC
elif activation.dtype == torch.float16:
return QuantType.STATIC
raise Exception("Unrecognized dtype combination in get_quant_type: activation({}),"
"weight({})".format(activation.dtype, weight.dtype))
def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool:
""" Checks if the given minimum and maximum values are valid, meaning that
they exist and the min value is less than the max value.
"""
if min_val.numel() == 0 or max_val.numel() == 0:
warnings.warn(
"must run observer before calling calculate_qparams. " +
"Returning default values."
)
return False
if min_val.dim() == 0 or max_val.dim() == 0:
if min_val == float("inf") and max_val == float("-inf"):
warnings.warn(
"must run observer before calling calculate_qparams. " +
"Returning default values."
)
return False
assert min_val <= max_val, "min {} should be less than max {}".format(
min_val, max_val
)
else:
assert torch.all(
min_val <= max_val
), "min {} should be less than max {}".format(min_val, max_val)
return True
def calculate_qmin_qmax(quant_min: int, quant_max: int, has_customized_qrange: bool, dtype: torch.dtype,
reduce_range: bool) -> Tuple[int, int]:
r"""Calculates actual qmin and qmax based on the quantization range,
observer datatype and if range is reduced.
"""
if has_customized_qrange:
# This initialization here is to be resolve TorchScript compilation issues and allow
# using of refinement to decouple initial_qmin and initial_qmax from quantization range.
# The actual values of initial_qmin and initial_qmax will be reset below.
initial_quant_min, initial_quant_max = 0, 255
# The following assignment of self.qmin and self.qmax to the local variables and the if check refine the
# attribute from Optional valid integers for use, based on TorchScript's requirements.
custom_quant_min, custom_quant_max = quant_min, quant_max
if custom_quant_min is not None and custom_quant_max is not None:
initial_quant_min, initial_quant_max = (
custom_quant_min,
custom_quant_max,
)
qrange_len = initial_quant_max - initial_quant_min + 1
assert (
0 < qrange_len <= 256
), "quantization range should be positive and not exceed the maximum bit range (=256)."
if dtype == torch.qint8:
quant_min, quant_max = -qrange_len // 2, qrange_len // 2 - 1
else:
quant_min, quant_max = 0, qrange_len - 1
if reduce_range:
quant_min, quant_max = quant_min // 2, quant_max // 2
else:
# Fallback onto default 8-bit qmin and qmax calculation if dynamic range is not used.
if dtype == torch.qint8:
if reduce_range:
quant_min, quant_max = -64, 63
else:
quant_min, quant_max = -128, 127
elif dtype == torch.quint8:
if reduce_range:
quant_min, quant_max = 0, 127
else:
quant_min, quant_max = 0, 255
else:
quant_min, quant_max = 0, 15
return quant_min, quant_max