| #include <torch/csrc/jit/ir.h> |
| |
| #include <c10/util/Exception.h> |
| #include <torch/csrc/jit/constants.h> |
| #include <torch/csrc/jit/operator.h> |
| #include <torch/csrc/jit/passes/python_print.h> |
| #include <torch/csrc/jit/script/schema_matching.h> |
| |
| #include <algorithm> |
| #include <iostream> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| |
| namespace torch { |
| namespace jit { |
| |
| void printQuotedString(std::ostream& stmt, const std::string& str); |
| |
| // Constants relating to maintaining the topological index of nodes. |
| // |
| // Lower and upper bounds of the index. Inclusive range. |
| static constexpr topo_position_t kLowerBound = INT64_MIN; |
| static constexpr topo_position_t kUpperBound = INT64_MAX; |
| static constexpr topo_position_t kMidPoint = 0; |
| |
| // How far away to space nodes that are appended to the graph. |
| // should be 2^n, where: |
| // - n is the maximum number of repeated insertions without a re-index |
| // - 2^(64-n) is the maximum number of appends to the end without reindex |
| static constexpr topo_position_t kAppendInterval = 1099511627776ULL /* 2^40 */; |
| |
| static void printValueRef(std::ostream& out, const Value* n) { |
| out << "%" << n->uniqueName(); |
| } |
| |
| // NB: This overload will become ambiguous with the one Caffe2 provides in its |
| // logging, if they ever intersect. |
| template <typename T> |
| std::ostream& operator<<(std::ostream& out, const std::vector<T>& nodes) { |
| out << at::ArrayRef<T>{nodes}; |
| return out; |
| } |
| |
| template <typename T> |
| static std::ostream& printValueRefs( |
| std::ostream& out, |
| const at::ArrayRef<T>& nodes) { |
| size_t i = 0; |
| for (auto n : nodes) { |
| if (i++ > 0) { |
| out << ", "; |
| } |
| printValueRef(out, n); |
| } |
| return out; |
| } |
| |
| // Can't make these two overloads directly a template, it'll be ambiguous with |
| // the global printer for operator<<. |
| |
| std::ostream& operator<<( |
| std::ostream& out, |
| const at::ArrayRef<const Value*>& nodes) { |
| return printValueRefs(out, nodes); |
| } |
| |
| std::ostream& operator<<(std::ostream& out, const at::ArrayRef<Value*>& nodes) { |
| return printValueRefs(out, nodes); |
| } |
| |
| struct const_value_list_with_types { |
| const ArrayRef<const Value*> values; |
| std::string delim; |
| const_value_list_with_types( |
| ArrayRef<const Value*> values, |
| std::string delim_ = ", ") |
| : values(values), delim(std::move(delim_)) {} |
| }; |
| |
| std::ostream& operator<<(std::ostream& out, const_value_list_with_types l) { |
| size_t i = 0; |
| for (auto n : l.values) { |
| if (i++ > 0) { |
| out << l.delim; |
| } |
| printValueRef(out, n); |
| out << " : "; |
| out << *n->type(); |
| } |
| return out; |
| } |
| |
| template <typename T> |
| static void printPrimList(std::ostream& out, const std::vector<T>& items) { |
| out << "["; |
| int i = 0; |
| for (auto& item : items) { |
| if (i++ > 0) { |
| out << ", "; |
| } |
| out << item; |
| } |
| out << "]"; |
| } |
| |
| static void printStrList( |
| std::ostream& out, |
| const std::vector<std::string>& items) { |
| out << "["; |
| int i = 0; |
| for (auto& item : items) { |
| if (i++ > 0) |
| out << ", "; |
| printQuotedString(out, item); |
| } |
| out << "]"; |
| } |
| |
| void Node::printAttrValue(std::ostream& out, const Symbol& name) const { |
| switch (kindOf(name)) { |
| case AttributeKind::f: |
| out << f(name); |
| break; |
| case AttributeKind::fs: |
| printPrimList(out, fs(name)); |
| break; |
| case AttributeKind::i: |
| out << i(name); |
| break; |
| case AttributeKind::is: |
| printPrimList(out, is(name)); |
| break; |
| case AttributeKind::s: |
| printQuotedString(out, s(name)); |
| break; |
| case AttributeKind::ss: |
| printStrList(out, ss(name)); |
| break; |
| case AttributeKind::t: { |
| at::Tensor tensor = t(name); |
| // 1-elem tensors are usually boxed scalars, so print them like it |
| if (tensor.numel() == 1) { |
| auto scalar_tensor = tensor.view({}).item(); |
| out << "{"; |
| if (scalar_tensor.isFloatingPoint()) { |
| out << scalar_tensor.toDouble(); |
| } else { |
| out << scalar_tensor.toLong(); |
| } |
| out << "}"; |
| } else if (tensor.numel() <= max_tensor_display_size) { |
| // TODO: This is awful code. Also it doesn't work on Windows. |
| std::ostringstream tensor_ss; |
| tensor_ss << tensor; |
| std::string tensor_s{tensor_ss.str()}; |
| // Remove newlines |
| std::replace(tensor_s.begin(), tensor_s.end(), '\n', ' '); |
| out << tensor_s; |
| } else { |
| out << "<Tensor>"; |
| } |
| break; |
| } |
| case AttributeKind::ts: |
| out << "[<Tensors>]"; |
| break; |
| case AttributeKind::g: |
| out << "<Graph>"; |
| break; |
| case AttributeKind::gs: |
| out << "[<Graphs>]"; |
| break; |
| } |
| } |
| |
| void Node::printAttributes(std::ostream& out, bool ignore_subgraph = false) |
| const { |
| out << "["; |
| auto names = attributeNames(); |
| int i = 0; |
| for (auto name : names) { |
| if (ignore_subgraph && name == attr::Subgraph) { |
| continue; |
| } |
| if (i++ > 0) { |
| out << ", "; |
| } |
| // TODO: debugging mode to see the qualifier. We definitely |
| // don't want to print the qualifier since it should always |
| // be attribute, but you might be able to track down a weird |
| // bug by printing it out. |
| out << name.toUnqualString() << "="; |
| |
| printAttrValue(out, name); |
| } |
| out << "]"; |
| } |
| |
| static std::ostream& indent(std::ostream& out, size_t level) { |
| for (size_t i = 0; i < level; ++i) { |
| out << " "; |
| } |
| return out; |
| } |
| |
| std::ostream& Node::print( |
| std::ostream& out, |
| size_t level, |
| std::vector<const Node*>* groups) const { |
| auto outs = outputs(); |
| indent(out, level) << const_value_list_with_types(outs); |
| out << " = "; |
| if (kind() == prim::PythonOp) { |
| auto* pyOp = static_cast<const ::torch::jit::PythonOp*>(this); |
| out << "^" << pyOp->name(); |
| pyOp->writeScalars(out); |
| } else { |
| if (hasAttribute(attr::Subgraph) && groups) { |
| out << kind().toQualString() << "_" << groups->size(); |
| if (numAttributes() > 1 && kind() != prim::DifferentiableGraph) { |
| printAttributes(out, /*ignore_subgraph=*/true); |
| } |
| groups->push_back(this); |
| } else { |
| out << kind().toQualString(); |
| if (hasAttributes()) { |
| printAttributes(out); |
| } |
| } |
| } |
| |
| out << "(" << inputs() << ")"; |
| std::string scName = scopeName(); |
| if (scName.empty()) { |
| out << "\n"; |
| } else { |
| out << ", "; |
| out << "scope: " << scName << "\n"; |
| } |
| for (size_t i = 0; i < blocks().size(); ++i) { |
| auto b = blocks()[i]; |
| indent(out, level + 1) << "block" << i << "(" |
| << const_value_list_with_types(b->inputs()) |
| << "):\n"; |
| for (auto nested : b->nodes()) { |
| nested->print(out, level + 2, groups); |
| } |
| indent(out, level + 2) << "-> (" << b->outputs() << ")\n"; |
| } |
| return out; |
| } |
| |
| std::ostream& operator<<(std::ostream& out, const Node& n) { |
| return n.print(out, 0, nullptr); |
| } |
| |
| std::ostream& operator<<(std::ostream& out, const Graph& g) { |
| out << "graph(" << const_value_list_with_types(g.inputs(), ",\n ") |
| << "):\n"; |
| std::vector<const Node*> groups; |
| for (auto n : g.nodes()) { |
| n->print(out, 1, &groups); |
| } |
| out << " return (" << g.outputs() << ")\n"; |
| size_t i = 0; |
| for (auto fg : groups) { |
| out << "with " << fg->kind().toQualString() << "_" << i++ << " = " |
| << *fg->g(attr::Subgraph); |
| } |
| /* |
| // Uncomment this to debug all_nodes issues |
| { |
| out << "\n"; |
| out << "all_nodes:\n"; |
| for (auto& n : g.all_nodes) { |
| printNode(out, const_cast<Node*>(n), nullptr); |
| } |
| } |
| */ |
| return out; |
| } |
| |
| static void checkSameDevice(const Node* node) { |
| bool has_device = false; |
| c10::optional<at::Device> device = c10::nullopt; |
| auto checkValue = [&](const Value* v) { |
| if (CompleteTensorTypePtr type = v->type()->cast<CompleteTensorType>()) { |
| if (!has_device) { |
| has_device = true; |
| device = type->device(); |
| } else { |
| AT_ASSERT(device == type->device()); |
| } |
| } |
| }; |
| for (auto input : node->inputs()) { |
| checkValue(input); |
| } |
| for (auto output : node->outputs()) { |
| checkValue(output); |
| } |
| } |
| |
| using node_set = std::set<const Node*>; |
| #define ALL_OF(container) container.begin(), container.end() |
| |
| // These functions purposely operate on the internal members directly, to force |
| // you to think about how the invariants change if you change the data |
| // representation (even if the external API does not change.) |
| |
| // NB: This assert is written to assume you don't have any unattached |
| // nodes. Unattached nodes can occur while manipulations to the |
| // graph are occurring. |
| void Node::lint() const { |
| // Node invariants |
| // - if node should live in list, nodes_iter is consistent |
| // - Inputs are all marked as a use by the nodes they refer to |
| // - Owning graph is non-null and consistent |
| // - The "Select" invariant, when the node is MultiReturn |
| // |
| // The handle invariant: |
| // If a node takes a handle as an input, it is always the |
| // LAST input of the node. There is at most one handle input. |
| |
| { |
| size_t i = 0; |
| for (auto input : inputs_) { |
| // WARNING: O(n^2) |
| // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) |
| AT_ASSERT( |
| std::find(ALL_OF(input->uses_), Use(const_cast<Node*>(this), i)) != |
| input->uses_.end()); |
| AT_ASSERT(graph_->all_nodes.count(this) == 1); |
| i++; |
| } |
| } |
| |
| for (auto o : outputs()) { |
| size_t i = 0; |
| for (auto use : o->uses()) { |
| // Use invariants |
| // - Use is consistent with inputs |
| // - Every user node is live (checked in Graph) |
| AT_ASSERT(use.user->inputs_[use.offset] == o); |
| i++; |
| } |
| } |
| |
| // Node subclass invariants |
| switch (kind()) { |
| case prim::Constant: |
| AT_ASSERT(inputs_.size() == 0); |
| break; |
| case prim::Return: |
| // Return uses is zero |
| AT_ASSERT(outputs().size() == 0); |
| break; |
| case prim::Param: |
| // Param inputs is zero |
| AT_ASSERT(inputs_.size() == 0); |
| break; |
| case prim::PythonOp: { |
| // Python operator cconv is correct |
| auto* value = static_cast<const PythonOp*>(this); |
| value->lint_python(); |
| break; |
| } |
| case prim::Eval: |
| // TODO: add invariants |
| // TODO: It's not good for these ops to be top-level, it makes cases |
| // longer. |
| break; |
| case prim::FusionGroup: |
| checkSameDevice(this); |
| // TODO: Typecheck the parameters |
| g(attr::Subgraph)->lint(); |
| break; |
| } |
| } |
| |
| // TODO: When lint fails, give better indication about which |
| // instruction triggered the failure. |
| void Graph::lint() const { |
| // Graph invariants |
| |
| // Uncomment the following to see the graph |
| // std::cout << *const_cast<Graph*>(this); |
| |
| // nodes |
| // - nodes_ is a valid topological ordering for inputs |
| // - No repeated nodes |
| // - Params and return do NOT occur in nodes |
| // - next_unique_ is greater than all uniques in graph |
| // - uniques in all_nodes are unique |
| // - every use will occur later in the topsort |
| |
| struct LintScope { |
| LintScope() = default; |
| LintScope(std::unique_ptr<LintScope> parent) : parent(std::move(parent)) {} |
| bool contains(const Value* v) { |
| return values.count(v) > 0 || (parent && parent->contains(v)); |
| } |
| bool contains(const Node* n) { |
| return nodes.count(n) > 0 || (parent && parent->contains(n)); |
| } |
| void insert(const Value* v) { |
| AT_ASSERT(!contains(v)); |
| values.insert(v); |
| } |
| void insert(const Node* n) { |
| AT_ASSERT(!contains(n)); |
| nodes.insert(n); |
| } |
| std::unique_ptr<LintScope> parent; |
| |
| private: |
| std::unordered_set<const Value*> values; |
| std::unordered_set<const Node*> nodes; |
| }; |
| // Struct enables mutual recursion in linting methods. |
| // Putting it inside Graph::lint enables access to private Graph members |
| struct LintImpl { |
| LintImpl(const Graph& g) |
| : g(g), |
| scope(new LintScope()), |
| all_nodes_set(ALL_OF(g.all_nodes)) {} // NB: all_nodes is *unordered* |
| const Graph& g; |
| std::unique_ptr<LintScope> scope; |
| std::unordered_set<size_t> seen_uniques; |
| std::unordered_map<const Node*, int64_t> anticipated_uses; |
| node_set all_nodes_set; |
| node_set sum_set; |
| |
| void check_value(const Value* v) { |
| scope->insert(v); |
| auto b2 = seen_uniques.insert(v->unique()); |
| AT_ASSERT(b2.second); // insertion took place |
| AT_ASSERT(v->unique() < g.next_unique_); |
| |
| for (auto use : v->uses()) { |
| AT_ASSERT(!scope->contains(use.user)); |
| AT_ASSERT(g.all_nodes.count(use.user) == 1); |
| anticipated_uses[use.user]++; // int default constructs to 0 |
| } |
| } |
| void check_node(const Node* n) { |
| for (auto input : n->inputs_) { |
| if (!scope->contains(input)) { |
| AT_ASSERTM(0, input->unique(), " not in scope"); |
| } |
| } |
| AT_ASSERT(anticipated_uses[n] == static_cast<int64_t>(n->inputs_.size())); |
| anticipated_uses[n] = -1; // we saw the anticipated user! |
| scope->insert(n); |
| for (auto block : n->blocks()) { |
| std::unique_ptr<LintScope> new_scope(new LintScope(std::move(scope))); |
| scope = std::move(new_scope); |
| check_block(block); |
| scope = std::move(scope->parent); |
| } |
| size_t i = 0; |
| for (auto o : n->outputs()) { |
| AT_ASSERT(o->node() == n); |
| AT_ASSERT(i++ == o->offset_); |
| check_value(o); |
| } |
| n->lint(); |
| } |
| void check_block(const Block* b) { |
| // Check topological ordering |
| AT_ASSERT(b->param_node()->isBefore(*b->nodes().begin())); |
| auto curNode = *b->nodes().begin(); |
| while (curNode != b->return_node()) { |
| AT_ASSERT(curNode->isBefore(curNode->next())); |
| curNode = curNode->next(); |
| } |
| |
| for (auto input : b->inputs()) { |
| check_value(input); |
| AT_ASSERT(input->node()->kind_ == prim::Param); |
| } |
| |
| for (auto n : b->nodes()) { |
| AT_ASSERT(n->kind_ != prim::Param); |
| AT_ASSERT(n->kind_ != prim::Return); |
| check_node(n); |
| } |
| |
| AT_ASSERT(b->output_->kind() == prim::Return); |
| check_node(b->output_); |
| |
| // all_nodes |
| // - inputs_, output_ and nodes_ are all included in all_nodes |
| // - all_nodes does not contain dead nodes??? (likely to be temporarily |
| // suspended). Weaker: all_nodes contains all inputs and returns |
| // - only one return node??? |
| |
| node_set nodes_set(ALL_OF(b->nodes())); |
| node_set inputs_set{b->input_}; |
| node_set output_set{b->output_}; |
| // TODO: Make a more type safe std::includes wrapper which disallows use |
| // on non-ordered containers |
| AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(nodes_set))); |
| AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(inputs_set))); |
| AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(output_set))); |
| |
| sum_set.insert(ALL_OF(nodes_set)); |
| sum_set.insert(ALL_OF(inputs_set)); |
| sum_set.insert(ALL_OF(output_set)); |
| } |
| void check_graph() { |
| node_set all_nodes_set( |
| ALL_OF(g.all_nodes)); // NB: all_nodes is *unordered* |
| |
| check_block(g.block_); |
| for (auto kv : anticipated_uses) { |
| AT_ASSERT(kv.second == -1); |
| } |
| AT_ASSERT(std::includes(ALL_OF(sum_set), ALL_OF(all_nodes_set))); |
| } |
| }; |
| LintImpl(*this).check_graph(); |
| } |
| |
| void Graph::dump() const { |
| std::cout << *this << "\n"; |
| } |
| |
| void LintGraph(std::shared_ptr<Graph>& graph) { |
| graph->lint(); |
| } |
| |
| Block::Block(Graph* graph_, Node* node_) |
| : graph_(graph_), |
| output_(graph_->create(prim::Return, 0)), |
| input_(graph_->create(prim::Param, 0)), |
| owning_node_(node_) { |
| |
| input_->next() = output_; |
| input_->prev() = output_; |
| output_->next() = input_; |
| output_->prev() = input_; |
| |
| graph_->all_blocks.emplace(this); |
| output_->owning_block_ = this; |
| output_->topo_position_ = kUpperBound; |
| input_->owning_block_ = this; |
| input_->topo_position_ = kLowerBound; |
| } |
| |
| void Block::reIndexTopology() { |
| auto curPos = kLowerBound; |
| for (auto node : nodes()) { |
| AT_ASSERT(curPos <= (kUpperBound - kAppendInterval)); |
| curPos += kAppendInterval; |
| node->topo_position_ = curPos; |
| } |
| } |
| |
| void Block::cloneFrom(Block* src, std::function<Value*(Value*)> value_map) { |
| std::unordered_map<Value*, Value*> local_map; |
| auto env = [&](Value* v) { |
| auto it = local_map.find(v); |
| if (it != local_map.end()) { |
| return it->second; |
| } |
| return value_map(v); |
| }; |
| |
| auto graph = owningGraph(); |
| for (auto input : src->inputs()) { |
| local_map[input] = this->addInput()->copyMetadata(input); |
| } |
| |
| for (auto node : src->nodes()) { |
| auto new_node = this->appendNode(graph->createClone(node, env)); |
| for (size_t i = 0; i < node->outputs().size(); ++i) { |
| auto oo = node->outputs()[i]; |
| auto no = new_node->outputs()[i]; |
| local_map[oo] = no; |
| no->copyMetadata(oo); |
| } |
| } |
| for (auto output : src->outputs()) { |
| this->registerOutput(env(output)); |
| } |
| } |
| |
| void Block::destroy() { |
| // we cannot destroy the output because it is used as the sentinel |
| // for the nodes() list and has to remain valid for the loop |
| output_->removeAllInputs(); |
| for (auto it = this->nodes().reverse().begin(), |
| end = this->nodes().reverse().end(); |
| it != end; |
| ++it) { |
| it.destroyCurrent(); |
| } |
| output_->destroy(); |
| input_->destroy(); |
| graph_->freeBlock(this); |
| } |
| |
| std::shared_ptr<Graph> Graph::copy() { |
| auto new_g = std::make_shared<Graph>(); |
| auto env = [](Value* v) -> Value* { |
| AT_ERROR( |
| "Graph::copy() encountered a use of a value not in scope. Run lint!"); |
| }; |
| new_g->block()->cloneFrom(this->block(), env); |
| return new_g; |
| } |
| |
| void Block::remapTypes(const std::function<TypePtr(TypePtr)>& type_map) { |
| for (Value* input : inputs()) { |
| input->setType(type_map(input->type())); |
| } |
| for (Node* node : nodes()) { |
| for (Value* output : node->outputs()) { |
| output->setType(type_map(output->type())); |
| } |
| for (Block* sub_block : node->blocks()) { |
| sub_block->remapTypes(type_map); |
| } |
| for (Symbol name : node->attributeNames()) { |
| if (node->kindOf(name) == AttributeKind::g) { |
| node->g(name)->remapTypes(type_map); |
| } else if (node->kindOf(name) == AttributeKind::gs) { |
| for (const auto& g : node->gs(name)) { |
| g->remapTypes(type_map); |
| } |
| } |
| } |
| } |
| } |
| |
| void Graph::remapTypes(const std::function<TypePtr(TypePtr)>& type_map) { |
| block()->remapTypes(type_map); |
| } |
| |
| bool Value::mustBeNone() const { |
| return node_->mustBeNone(); |
| } |
| bool Value::mustNotBeNone() const { |
| return node_->kind() != prim::AutogradAdd && type() != NoneType::get() && |
| !type()->cast<OptionalType>(); |
| } |
| |
| std::string Value::uniqueNameBase() const { |
| std::string name = uniqueName(); |
| std::string name_base = name; |
| auto last_dot_pos = name.find_last_of('.'); |
| if (last_dot_pos != std::string::npos && last_dot_pos + 1 != name.size()) { |
| if (name.find_first_not_of("0123456789", last_dot_pos + 1) == |
| std::string::npos) { |
| name_base = name.substr(0, last_dot_pos); |
| } |
| } |
| return name_base; |
| } |
| |
| bool Value::isValidName(const std::string& name) { |
| // Empty strings are legal |
| if (!name.size()) { |
| return true; |
| } |
| |
| // Numbers are not legal |
| if (name.find_first_not_of("0123456789") == std::string::npos) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| Value* Value::setUniqueName(const std::string& name) { |
| if (!isValidName(name)) { |
| throw std::runtime_error("Invalid name: '" + name + "'"); |
| } |
| |
| auto& names = node()->owningGraph()->unique_names_; |
| |
| // clear any old name from the map |
| if (hasUniqueName()) { |
| names.erase(unique_name_); |
| unique_name_ = ""; |
| } |
| |
| // allow "" to clear the uniquename |
| if (name == "") { |
| return this; |
| } |
| |
| // if someone else has this name, then rename the other value |
| auto old_owner_of_name = names.find(name); |
| if (old_owner_of_name != names.end()) { |
| size_t suffix = 1; |
| std::string name_base = name; |
| auto last_dot_pos = name.find_last_of('.'); |
| if (last_dot_pos != std::string::npos && last_dot_pos + 1 != name.size()) { |
| if (name.find_first_not_of("0123456789", last_dot_pos + 1) == |
| std::string::npos) { |
| suffix = std::stoll(name.substr(last_dot_pos + 1)); |
| name_base = name.substr(0, last_dot_pos); |
| } |
| } |
| std::string replacement_name; |
| do { |
| std::stringstream ss; |
| ss << name_base << "." << suffix++; |
| replacement_name = ss.str(); |
| } while (names.count(replacement_name) > 0); |
| old_owner_of_name->second->setUniqueName(replacement_name); |
| } |
| |
| names[name] = this; |
| unique_name_ = name; |
| return this; |
| } |
| |
| Value* Value::copyMetadata(Value* from) { |
| setType(from->type()); |
| if (from->hasUniqueName()) { |
| setUniqueName(from->uniqueName()); |
| } |
| return this; |
| } |
| |
| void Value::replaceFirstUseWith(Value* newValue) { |
| AT_ASSERT(owningGraph() == newValue->owningGraph()); |
| auto u = uses()[0]; |
| u.user->inputs_[u.offset] = newValue; |
| newValue->uses_.push_back(u); |
| uses_.erase(uses_.begin()); |
| } |
| |
| void Value::replaceAllUsesWith(Value* newValue) { |
| while (!uses().empty()) { |
| replaceFirstUseWith(newValue); |
| } |
| } |
| |
| size_t findArgument(const FunctionSchema& the_schema, Symbol name) { |
| auto name_str = name.toUnqualString(); |
| for (size_t i = 0; i < the_schema.arguments().size(); ++i) { |
| const Argument* arg = &the_schema.arguments()[i]; |
| if (arg->name() == name_str) { |
| return i; |
| } |
| } |
| throw std::runtime_error( |
| std::string("Couldn't find an argument called ") + name.toQualString()); |
| } |
| |
| c10::optional<IValue> Node::get(Symbol name) const { |
| return toIValue(namedInput(name)); |
| } |
| |
| Value* Node::namedInput(Symbol name) const { |
| return input(findArgument(schema(), name)); |
| } |
| |
| bool Node::matches( |
| const char* signature_literal, |
| at::ArrayRef<Symbol> const_inputs) const { |
| if (!sig(signature_literal).matches(this)) { |
| return false; |
| } |
| for (Symbol s : const_inputs) { |
| if (!is_constant(s)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Node::mustBeNone() const { |
| return kind_ == prim::AutogradZero || |
| (kind_ == prim::Constant && !this->hasAttributes() && |
| (output()->type()->cast<OptionalType>() || |
| output()->type() == NoneType::get())); |
| } |
| |
| void Node::dump() const { |
| std::cout << *this << "\n"; |
| } |
| |
| void Node::findSchema() const { |
| schema_ = &getOperatorFor(this).schema(); |
| } |
| |
| const FunctionSchema* Node::maybeSchema() const { |
| if (!schema_) { |
| if (auto op = findOperatorFor(this)) { |
| schema_ = &op->schema(); |
| } |
| } |
| return schema_; |
| } |
| |
| bool Node::isNondeterministic() const { |
| static const OperatorSet nondeterministic_ops = { |
| "aten::dropout(Tensor input, float p, bool train) -> Tensor", |
| "aten::_fused_dropout(Tensor self, float p, Generator? generator) -> (Tensor, Tensor)", |
| "aten::_standard_gamma(Tensor self, Generator? generator) -> Tensor", |
| "aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor", |
| "aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor", |
| "aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator? generator) -> Tensor", |
| "aten::normal(Tensor mean, Tensor std, *, Generator? generator) -> Tensor", |
| "aten::normal(float mean, Tensor std, *, Generator? generator) -> Tensor", |
| "aten::normal(Tensor mean, float std, *, Generator? generator) -> Tensor", |
| "aten::poisson(Tensor self, Generator? generator) -> Tensor", |
| "aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor", |
| "aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor", |
| "aten::rand(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor", |
| "aten::rand_like(Tensor self) -> Tensor", |
| "aten::rand_like(Tensor self, *, int dtype, int layout, Device device, bool pin_memory) -> Tensor", |
| "aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor", |
| "aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor", |
| "aten::randint_like(Tensor self, int high) -> Tensor", |
| "aten::randint_like(Tensor self, int low, int high) -> Tensor", |
| "aten::randint_like(Tensor self, int high, *, int dtype, int layout, Device device, bool pin_memory) -> Tensor", |
| "aten::randint_like(Tensor self, int low, int high, *, int dtype, int layout, Device device, bool pin_memory) -> Tensor", |
| "aten::randn(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor", |
| "aten::randn_like(Tensor self) -> Tensor", |
| "aten::randn_like(Tensor self, *, int dtype, int layout, Device device, bool pin_memory) -> Tensor", |
| "aten::randperm(int n, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor"}; |
| |
| if (nondeterministic_ops.find(this) == nullptr) { |
| return false; |
| } |
| // Dropout with train = False is deterministic |
| if (matches("aten::dropout(Tensor input, float p, bool train) -> Tensor") && |
| is_constant(attr::train) && !get<bool>(attr::train).value()) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool Node::hasSideEffects() const { |
| switch (kind_) { |
| case prim::PythonOp: |
| case prim::IgnoredPythonOp: |
| case prim::Print: |
| case prim::RaiseException: |
| case prim::SetAttr: |
| case aten::warn: |
| case aten::manual_seed: |
| case prim::AddStatValue: |
| case prim::TimePoint: |
| return true; |
| } |
| // All other builtin ops are known to be safe. |
| // see [custom operator aliasing] |
| if (kind_.is_aten() || kind_.is_prim() || kind_.is_onnx()) { |
| return false; |
| } |
| |
| // Custom ops may have arbitrary side effects |
| return true; |
| } |
| |
| // Assign this node a topological position, to facilitate fast isBefore() and |
| // isAfter() queries. Must be called right after a node is inserted into the |
| // node list. |
| // |
| // The basic scheme is: assign every node a position (uint64_t). The common |
| // case (appending to the end of the graph) is made more efficient by advancing |
| // a fixed interval past the previous node and placing `this` there. Otherwise, |
| // assign `this` a position at the midpoint between its prev() and next() |
| // nodes. |
| // |
| // If we ever run out of space (by, e.g. inserting too much in place), we |
| // reindex by spreading out all the nodes again. |
| void Node::assignTopoPosition() { |
| bool is_first = prev() == owningBlock()->param_node(); |
| bool is_last = next() == owningBlock()->return_node(); |
| |
| const auto prevPos = prev()->topo_position_; |
| const auto nextPos = next()->topo_position_; |
| |
| // Append to the end of the graph |
| if (is_last) { |
| if (is_first) { |
| // the node list is empty, assign the first position |
| topo_position_ = kMidPoint; |
| return; |
| } |
| |
| if (prevPos >= (kUpperBound - kAppendInterval)) { |
| // we're running off the edge |
| owningBlock()->reIndexTopology(); |
| return; |
| } |
| |
| topo_position_ = prevPos + kAppendInterval; |
| |
| // Prepend to the graph |
| } else if (is_first) { |
| // next() is the first element in the block list |
| if (nextPos <= (kLowerBound + kAppendInterval)) { |
| // we're running off the edge |
| owningBlock()->reIndexTopology(); |
| return; |
| } |
| topo_position_ = nextPos - kAppendInterval; |
| |
| // insert between two existing nodes |
| } else { |
| const auto posBetween = prevPos + (nextPos - prevPos) / 2; |
| if (posBetween == prevPos) { |
| // There was no room |
| owningBlock()->reIndexTopology(); |
| return; |
| } |
| topo_position_ = posBetween; |
| } |
| } |
| |
| Node::Node(Graph* graph_, NodeKind kind_) |
| : kind_(kind_), |
| graph_(graph_), |
| owning_block_(nullptr), |
| scope_(graph_->current_scope_), |
| schema_(nullptr), |
| topo_position_(0) { |
| graph_->all_nodes.emplace(this); |
| } |
| |
| void Node::eraseOutput(size_t i) { |
| AT_ASSERT(i < outputs_.size()); |
| AT_ASSERT(outputs_[i]->uses().empty()); |
| schema_ = nullptr; |
| Value* n = outputs_[i]; |
| outputs_.erase(outputs_.begin() + i); |
| owningGraph()->freeValue(n); |
| for (size_t j = i; j < outputs_.size(); j++) { |
| outputs_[j]->offset_--; |
| } |
| } |
| |
| Block* Node::addBlock() { |
| schema_ = nullptr; |
| blocks_.push_back(new Block(owningGraph(), this)); |
| return blocks_.back(); |
| } |
| |
| void Node::eraseBlock(size_t i) { |
| AT_ASSERT(i < blocks_.size()); |
| schema_ = nullptr; |
| Block* n = blocks_[i]; |
| blocks_.erase(blocks_.begin() + i); |
| n->destroy(); |
| } |
| |
| void Node::destroy() { |
| while (!outputs().empty()) { |
| eraseOutput(outputs().size() - 1); |
| } |
| while (!blocks().empty()) { |
| eraseBlock(blocks().size() - 1); |
| } |
| removeAllInputs(); |
| if (inBlockList()) { |
| removeFromList(); |
| } |
| graph_->freeNode(this); |
| } |
| |
| void Node::cloneFrom(Node* s) { |
| setSourceLocation(s->getSourceLocation()); |
| if (s->scope_ && !s->scope_->isBlank()) { |
| scope_ = s->scope_; |
| } |
| copyAttributes(*s); |
| } |
| |
| void Node::replaceAllUsesWith(Node* n) { |
| AT_ASSERT(outputs().size() == n->outputs().size()); |
| size_t nOutputs = outputs().size(); |
| for (size_t i = 0; i < nOutputs; i++) { |
| outputs()[i]->replaceAllUsesWith(n->outputs()[i]); |
| } |
| } |
| |
| Value* Node::insertInput(size_t i, Value* value) { |
| AT_ASSERT(graph_ == value->owningGraph()); |
| schema_ = nullptr; |
| // First we update the offsets for all existing inputs that will reside |
| // after the one we're inserting. Concretely, these are the inputs at |
| // indices [i, # input). Since we're inserting one input before all of |
| // these inputs, increment their use offsets for this value by 1 |
| for (size_t use_itr = i; use_itr < inputs_.size(); ++use_itr) { |
| // See Note [User node does not uniquely identify use] |
| auto use = findUseForInput(use_itr); |
| use->offset += 1; |
| } |
| // Insert the actual input at the specified index |
| inputs_.insert(inputs_.begin() + i, value); |
| // Register the new use of the value we're inserted as an input. |
| value->uses_.emplace_back(this, i); |
| return value; |
| } |
| |
| Value* Node::addInput(Value* value) { |
| AT_ASSERT(graph_ == value->owningGraph()); |
| schema_ = nullptr; |
| value->uses_.emplace_back(this, inputs_.size()); |
| inputs_.push_back(value); |
| return value; |
| } |
| |
| Value* Node::replaceInput(size_t i, Value* newValue) { |
| AT_ASSERT(newValue->owningGraph() == graph_); |
| schema_ = nullptr; |
| Value* old = dropInput(i); |
| inputs_[i] = newValue; |
| newValue->uses_.emplace_back(this, i); |
| return old; |
| } |
| |
| void Node::replaceInputWith(Value* from, Value* to) { |
| AT_ASSERT(from->owningGraph() == graph_); |
| AT_ASSERT(to->owningGraph() == graph_); |
| schema_ = nullptr; |
| size_t i = 0; |
| for (auto input : inputs()) { |
| if (input == from) { |
| replaceInput(i, to); |
| } |
| i++; |
| } |
| } |
| |
| Value* Node::addOutput() { |
| outputs_.push_back(new Value(this, outputs_.size())); |
| schema_ = nullptr; |
| return outputs_.back(); |
| } |
| |
| Value* Node::insertOutput(size_t i) { |
| schema_ = nullptr; |
| outputs_.insert(outputs_.begin() + i, new Value(this, i)); |
| for (size_t itr = i + 1; itr < outputs_.size(); ++itr) { |
| outputs_[itr]->setOffset(outputs_[itr]->offset() + 1); |
| } |
| return outputs_.at(i); |
| } |
| |
| bool Node::isBeforeOrAfter(const Node* n, MoveSide moveSide) const { |
| if (this->owningBlock() == n->owningBlock()) { |
| if (moveSide == MoveSide::BEFORE) { |
| return this->topo_position_ < n->topo_position_; |
| } |
| |
| if (moveSide == MoveSide::AFTER) { |
| return this->topo_position_ > n->topo_position_; |
| } |
| |
| AT_ASSERT(this == n); |
| return false; |
| } |
| |
| // These nodes don't share a common block. Traverse the blockchains upward |
| // until we find the first common block. |
| auto lhs = this; |
| while (lhs) { |
| AT_ASSERT(lhs->owningBlock()); |
| |
| auto rhs = n; |
| while (rhs) { |
| if (!rhs->owningBlock()) { |
| break; |
| } |
| |
| if (lhs->owningBlock() == rhs->owningBlock()) { |
| return lhs->isBeforeOrAfter(rhs, moveSide); |
| } |
| rhs = rhs->owningBlock()->owningNode(); |
| } |
| |
| lhs = lhs->owningBlock()->owningNode(); |
| } |
| // should never reach here, since both nodes are ultimately in the same graph |
| AT_ASSERT(false); |
| } |
| |
| bool Node::isBefore(const Node* n) const { |
| return isBeforeOrAfter(n, MoveSide::BEFORE); |
| } |
| |
| bool Node::isAfter(const Node* n) const { |
| return isBeforeOrAfter(n, MoveSide::AFTER); |
| } |
| |
| Node* Node::insertBefore(Node* n) { |
| AT_ASSERT(n->inBlockList()); |
| insertAfter(n->prev()); |
| return this; |
| } |
| |
| Node* Node::insertAfter(Node* n) { |
| AT_ASSERT(!inBlockList() && n->inBlockList()); |
| AT_ASSERT(n->owningBlock()); |
| AT_ASSERTM(n->kind() != prim::Return, "Attempting to insert a Node after the Return node or before the Param node"); |
| this->owning_block_ = n->owningBlock(); |
| Node* next = n->next(); |
| n->next() = this; |
| this->prev() = n; |
| this->next() = next; |
| next->prev() = this; |
| assignTopoPosition(); |
| return this; |
| } |
| |
| void Node::moveAfter(Node* n) { |
| removeFromList(); |
| insertAfter(n); |
| } |
| |
| void Node::moveBefore(Node* n) { |
| removeFromList(); |
| insertBefore(n); |
| } |
| |
| void Node::removeInput(size_t i) { |
| schema_ = nullptr; |
| dropInput(i); |
| // everything after this input shifts left, |
| // so we need to update their use offsets to match |
| for (size_t j = i + 1; j < inputs_.size(); j++) { |
| auto it = findUseForInput(j); |
| it->offset--; |
| } |
| inputs_.erase(inputs_.begin() + i); |
| } |
| |
| void Node::removeAllInputs() { |
| schema_ = nullptr; |
| for (size_t i = 0; i < inputs().size(); ++i) { |
| dropInput(i); |
| } |
| inputs_.clear(); |
| } |
| |
| use_list::iterator Node::findUseForInput(size_t i) { |
| auto& input_uses = inputs_[i]->uses_; |
| // O(N) on the use list, but unless we get nodes with +100 uses |
| // vector traversal still is probably faster than linked list |
| auto use_it = std::find(input_uses.begin(), input_uses.end(), Use(this, i)); |
| AT_ASSERT(use_it != input_uses.end()); |
| return use_it; |
| } |
| |
| Value* Node::dropInput(size_t i) { |
| AT_ASSERT(i < inputs_.size()); |
| auto input_node = inputs_[i]; |
| auto use_it = findUseForInput(i); |
| input_node->uses_.erase(use_it); |
| inputs_[i] = nullptr; |
| return input_node; |
| } |
| |
| void Node::removeFromList() { |
| AT_ASSERT(inBlockList()); |
| this->owning_block_ = nullptr; |
| Node* next = this->next(); |
| Node* prev = this->prev(); |
| prev->next() = next; |
| next->prev() = prev; |
| this->next() = nullptr; |
| this->prev() = nullptr; |
| } |
| |
| inline const SourceRange& fakeRange() { |
| static SourceRange range( |
| std::make_shared<std::string>("<internally-created-node>"), 0, 1); |
| return range; |
| } |
| |
| Value* Graph::insert( |
| Symbol opname, |
| at::ArrayRef<NamedValue> args, |
| at::ArrayRef<NamedValue> kwargs, |
| const c10::optional<SourceRange>& range) { |
| return script::emitBuiltinCall( |
| range.value_or(fakeRange()), |
| *this, |
| opname, |
| c10::nullopt, |
| args, |
| kwargs, |
| /*required=*/true); |
| } |
| |
| Node* Graph::create(NodeKind kind, size_t num_outputs) { |
| // NB: Node constructor adds node to all_nodes |
| auto n = new Node(this, kind); |
| for (size_t i = 0; i < num_outputs; i++) { |
| n->addOutput(); |
| } |
| return n; |
| } |
| |
| Node* Graph::create( |
| NodeKind kind, |
| ArrayRef<Value*> inputs, |
| size_t num_outputs) { |
| auto n = create(kind, num_outputs); |
| for (auto i : inputs) { |
| n->addInput(i); |
| } |
| return n; |
| } |
| |
| Node* Graph::createAutogradZero() { |
| return create(prim::AutogradZero); |
| } |
| |
| Node* Graph::createNone(TypePtr typ) { |
| Node* n = create(prim::Constant); |
| n->output()->setType(OptionalType::create(std::move(typ))); |
| return n; |
| } |
| |
| Node* Graph::createWithSubgraph(Symbol kind) { |
| auto n = create(kind, 0); |
| n->g_(attr::Subgraph, std::make_shared<Graph>(current_scope())); |
| return n; |
| } |
| |
| Node* Graph::createTuple( |
| at::ArrayRef<Value*> values, |
| c10::OptNameList field_names) { |
| auto types = fmap(values, [](Value* v) { return v->type(); }); |
| auto tt = TupleType::create(std::move(types), std::move(field_names)); |
| auto n = create(prim::TupleConstruct, values); |
| n->output()->setType(tt); |
| return n; |
| } |
| |
| Node* Graph::createTupleUnpack(Value* v) { |
| TupleTypePtr tt = v->type()->expect<TupleType>(); |
| auto n = create(prim::TupleUnpack, {v}, 0); |
| for (auto& element : tt->elements()) { |
| n->addOutput()->setType(element); |
| } |
| return n; |
| } |
| |
| Node* Graph::createTupleIndex( |
| Value* tup, |
| Value* idx, |
| const TypePtr& output_type) { |
| auto n = create(prim::TupleIndex, {tup, idx}); |
| n->output()->setType(output_type); |
| return n; |
| } |
| |
| Node* Graph::createTupleSlice(Value* tup, int64_t beg, int64_t end) { |
| auto n = create(prim::TupleSlice, {tup}); |
| auto tuple_type = tup->type()->expect<TupleType>(); |
| n->i_(attr::beg, beg); |
| n->i_(attr::end, end); |
| std::vector<TypePtr> output_types; |
| for (auto i = beg; i < end; ++i) { |
| output_types.push_back(tuple_type->elements().at(i)); |
| } |
| auto tt = TupleType::create(std::move(output_types)); |
| n->output()->setType(tt); |
| return n; |
| } |
| |
| Node* Graph::createList(const TypePtr& elem_type, at::ArrayRef<Value*> values) { |
| auto n = create(prim::ListConstruct, values); |
| for (const auto& v : values) { |
| AT_ASSERT(v->type()->isSubtypeOf(elem_type)); |
| } |
| n->output()->setType(ListType::create(elem_type)); |
| return n; |
| } |
| Node* Graph::createListUnpack(Value* v, size_t size) { |
| ListTypePtr list_type = v->type()->expect<ListType>(); |
| TypePtr elem_type = list_type->getElementType(); |
| auto n = create(prim::ListUnpack, {v}, 0); |
| for (size_t i = 0; i < size; ++i) { |
| n->addOutput()->setType(elem_type); |
| } |
| return n; |
| } |
| |
| Node* Graph::createDict( |
| const TypePtr& key_type, |
| const TypePtr& value_type, |
| at::ArrayRef<Value*> keys, |
| at::ArrayRef<Value*> values) { |
| AT_ASSERT(keys.size() == values.size()); |
| auto n = create(prim::DictConstruct, 1); |
| for (size_t i = 0; i < keys.size(); ++i) { |
| AT_ASSERT(keys[i]->type()->isSubtypeOf(key_type)); |
| AT_ASSERT(values[i]->type()->isSubtypeOf(value_type)); |
| |
| n->addInput(keys[i]); |
| n->addInput(values[i]); |
| } |
| n->output()->setType(DictType::create(key_type, value_type)); |
| return n; |
| } |
| |
| Node* Graph::createDictIndex(Value* dict, Value* index) { |
| auto dict_type = dict->type()->expect<DictType>(); |
| AT_ASSERT(index->type()->isSubtypeOf(dict_type->getKeyType())); |
| |
| auto n = create(prim::DictIndex, {dict, index}); |
| n->output()->setType(dict_type->getValueType()); |
| return n; |
| } |
| |
| Node* Graph::createNumToTensor(Value* value) { |
| auto typ = value->type(); |
| Node* result = create(prim::NumToTensor, {value}); |
| result->output()->setType(CompleteTensorType::fromNumberType(std::move(typ))); |
| return result; |
| } |
| |
| Node* Graph::createImplicitTensorToNum(const TypePtr& type, Value* value) { |
| auto* result = create(prim::ImplicitTensorToNum, {value}); |
| result->output()->setType(type); |
| return result; |
| } |
| |
| Node* Graph::createObject(const ClassTypePtr& type) { |
| auto result = create(prim::CreateObject); |
| result->output()->setType(type); |
| return result; |
| } |
| |
| Node* Graph::createSetAttr( |
| Value* obj, |
| const std::string& field, |
| Value* newValue) { |
| auto n = create(prim::SetAttr, {obj, newValue}, /*num_outputs=*/0); |
| n->s_(attr::name, field); |
| return n; |
| } |
| |
| Node* Graph::createGetAttr(Value* obj, const std::string& field) { |
| const auto classType = obj->type()->expect<ClassType>(); |
| |
| auto n = create(prim::GetAttr, {obj}, /*num_outputs=*/1); |
| n->s_(attr::name, field); |
| |
| const auto outputType = classType->getAttribute(field); |
| n->output()->setType(outputType); |
| return n; |
| } |
| |
| Node* Graph::createClone( |
| Node* n, |
| const std::function<Value*(Value*)>& value_map, |
| bool copy_blocks) { |
| // n can be from a different graph |
| Node* r = n->allocNewInstance(this); |
| for (auto o : n->outputs()) { |
| r->addOutput()->copyMetadata(o); |
| } |
| r->cloneFrom(n); |
| for (auto i : n->inputs()) { |
| r->addInput(value_map(i)); |
| } |
| if (copy_blocks) { |
| for (auto b : n->blocks()) { |
| r->addBlock()->cloneFrom(b, value_map); |
| } |
| } |
| return r; |
| } |
| |
| Value* Graph::insertConstant( |
| IValue val, |
| const TypePtr& result_type, |
| c10::optional<SourceRange> loc, |
| c10::optional<ScopePtr> scope) { |
| return jit::insertConstant( |
| *this, std::move(val), result_type, std::move(loc), std::move(scope)); |
| } |
| |
| std::string Graph::toString() const { |
| std::ostringstream oss; |
| oss << *this; |
| return oss.str(); |
| } |
| |
| Graph::~Graph() { |
| for (const Node* n : all_nodes) { |
| delete n; |
| } |
| for (const Value* v : all_values) { |
| delete v; |
| } |
| for (const Block* b : all_blocks) { |
| delete b; |
| } |
| } |
| |
| void Graph::freeNode(Node* n) { |
| auto it = all_nodes.find(n); |
| AT_ASSERT(it != all_nodes.end()); |
| delete *it; |
| all_nodes.erase(it); |
| } |
| void Graph::freeValue(Value* v) { |
| v->setUniqueName(""); |
| auto it = all_values.find(v); |
| AT_ASSERT(it != all_values.end()); |
| delete *it; |
| all_values.erase(it); |
| } |
| void Graph::freeBlock(Block* b) { |
| auto it = all_blocks.find(b); |
| AT_ASSERT(it != all_blocks.end()); |
| delete *it; |
| all_blocks.erase(it); |
| } |
| |
| at::ArrayRef<Value*> createTupleUnpack(Value* v) { |
| // small peephole optimization to ensure IntArrayRef attributes can still turn |
| // into constants e.g. in x.expand([3, 4]) |
| if (v->node()->kind() == prim::TupleConstruct) { |
| return v->node()->inputs(); |
| } |
| auto& g = *v->owningGraph(); |
| return g.insertNode(g.createTupleUnpack(v))->outputs(); |
| } |
| |
| std::vector<Value*> inlineCallTo( |
| Graph& g, |
| Graph& callee, |
| ArrayRef<Value*> inputs, |
| bool unpack_outputs) { |
| std::unordered_map<Value*, Value*> value_map; |
| auto value_map_func = [&](Value* v) { return value_map.at(v); }; |
| AT_ASSERT(callee.inputs().size() == inputs.size()); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| value_map[callee.inputs()[i]] = inputs[i]; |
| } |
| for (auto* node : callee.nodes()) { |
| auto* new_node = g.insertNode(g.createClone(node, value_map_func)); |
| for (size_t i = 0; i < node->outputs().size(); ++i) { |
| value_map[node->outputs()[i]] = new_node->outputs()[i]; |
| } |
| } |
| |
| std::vector<Value*> outputs; |
| for (auto* output : callee.outputs()) { |
| outputs.push_back(value_map_func(output)); |
| } |
| |
| if (unpack_outputs && outputs.size() == 1 && |
| callee.outputs().at(0)->type()->kind() == TupleType::Kind) { |
| auto tup = outputs[0]; |
| outputs.clear(); |
| for (Value* v : createTupleUnpack(tup)) { |
| outputs.emplace_back(v); |
| } |
| // if this was a peephole tuple unpack we can just get rid of |
| // the tuple construct here and prevent needing DCE |
| if (tup->node()->kind() == prim::TupleConstruct && |
| !tup->node()->hasUses()) { |
| tup->node()->destroy(); |
| } |
| } |
| |
| return outputs; |
| } |
| |
| void ProfileOp::cloneFrom(Node* other_) { |
| Node::cloneFrom(other_); |
| auto other = other_->cast<ProfileOp>(); |
| this->callback_ = other->getCallback(); |
| } |
| Node* ProfileOp::allocNewInstance(Graph* g) { |
| return new ProfileOp(g, {nullptr}); |
| } |
| |
| constexpr Symbol ProfileOp::Kind; |
| } // namespace jit |
| } // namespace torch |