blob: 6117041ae726da536fdd16c8cf52b2789da35730 [file] [log] [blame]
# ---[ cuda
# Poor man's include guard
if(TARGET torch::cudart)
return()
endif()
# sccache is only supported in CMake master and not in the newest official
# release (3.11.3) yet. Hence we need our own Modules_CUDA_fix to enable sccache.
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR}/../Modules_CUDA_fix)
# We don't want to statically link cudart, because we rely on it's dynamic linkage in
# python (follow along torch/cuda/__init__.py and usage of cudaGetErrorName).
# Technically, we can link cudart here statically, and link libtorch_python.so
# to a dynamic libcudart.so, but that's just wasteful.
# However, on Windows, if this one gets switched off, the error "cuda: unknown error"
# will be raised when running the following code:
# >>> import torch
# >>> torch.cuda.is_available()
# >>> torch.cuda.current_device()
# More details can be found in the following links.
# https://github.com/pytorch/pytorch/issues/20635
# https://github.com/pytorch/pytorch/issues/17108
if(NOT MSVC)
set(CUDA_USE_STATIC_CUDA_RUNTIME OFF CACHE INTERNAL "")
endif()
# Find CUDA.
find_package(CUDA)
if(NOT CUDA_FOUND)
message(WARNING
"Caffe2: CUDA cannot be found. Depending on whether you are building "
"Caffe2 or a Caffe2 dependent library, the next warning / error will "
"give you more info.")
set(CAFFE2_USE_CUDA OFF)
return()
endif()
# Enable CUDA language support
set(CUDAToolkit_ROOT "${CUDA_TOOLKIT_ROOT_DIR}")
# Pass clang as host compiler, which according to the docs
# Must be done before CUDA language is enabled, see
# https://cmake.org/cmake/help/v3.15/variable/CMAKE_CUDA_HOST_COMPILER.html
if("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(CMAKE_CUDA_HOST_COMPILER "${CMAKE_C_COMPILER}")
endif()
enable_language(CUDA)
set(CMAKE_CUDA_STANDARD ${CMAKE_CXX_STANDARD})
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
# CMP0074 - find_package will respect <PackageName>_ROOT variables
cmake_policy(PUSH)
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.12.0)
cmake_policy(SET CMP0074 NEW)
endif()
find_package(CUDAToolkit REQUIRED)
cmake_policy(POP)
if(NOT CMAKE_CUDA_COMPILER_VERSION STREQUAL CUDAToolkit_VERSION OR
NOT CUDA_INCLUDE_DIRS STREQUAL CUDAToolkit_INCLUDE_DIR)
message(FATAL_ERROR "Found two conflicting CUDA installs:\n"
"V${CMAKE_CUDA_COMPILER_VERSION} in '${CUDA_INCLUDE_DIRS}' and\n"
"V${CUDAToolkit_VERSION} in '${CUDAToolkit_INCLUDE_DIR}'")
endif()
if(NOT TARGET CUDA::nvToolsExt)
message(FATAL_ERROR "Failed to find nvToolsExt")
endif()
message(STATUS "Caffe2: CUDA detected: " ${CUDA_VERSION})
message(STATUS "Caffe2: CUDA nvcc is: " ${CUDA_NVCC_EXECUTABLE})
message(STATUS "Caffe2: CUDA toolkit directory: " ${CUDA_TOOLKIT_ROOT_DIR})
if(CUDA_VERSION VERSION_LESS 11.0)
message(FATAL_ERROR "PyTorch requires CUDA 11.0 or above.")
endif()
if(CUDA_FOUND)
# Sometimes, we may mismatch nvcc with the CUDA headers we are
# compiling with, e.g., if a ccache nvcc is fed to us by CUDA_NVCC_EXECUTABLE
# but the PATH is not consistent with CUDA_HOME. It's better safe
# than sorry: make sure everything is consistent.
if(MSVC AND CMAKE_GENERATOR MATCHES "Visual Studio")
# When using Visual Studio, it attempts to lock the whole binary dir when
# `try_run` is called, which will cause the build to fail.
string(RANDOM BUILD_SUFFIX)
set(PROJECT_RANDOM_BINARY_DIR "${PROJECT_BINARY_DIR}/${BUILD_SUFFIX}")
else()
set(PROJECT_RANDOM_BINARY_DIR "${PROJECT_BINARY_DIR}")
endif()
set(file "${PROJECT_BINARY_DIR}/detect_cuda_version.cc")
file(WRITE ${file} ""
"#include <cuda.h>\n"
"#include <cstdio>\n"
"int main() {\n"
" printf(\"%d.%d\", CUDA_VERSION / 1000, (CUDA_VERSION / 10) % 100);\n"
" return 0;\n"
"}\n"
)
if(NOT CMAKE_CROSSCOMPILING)
try_run(run_result compile_result ${PROJECT_RANDOM_BINARY_DIR} ${file}
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${CUDA_INCLUDE_DIRS}"
LINK_LIBRARIES ${CUDA_LIBRARIES}
RUN_OUTPUT_VARIABLE cuda_version_from_header
COMPILE_OUTPUT_VARIABLE output_var
)
if(NOT compile_result)
message(FATAL_ERROR "Caffe2: Couldn't determine version from header: " ${output_var})
endif()
message(STATUS "Caffe2: Header version is: " ${cuda_version_from_header})
if(NOT cuda_version_from_header STREQUAL ${CUDA_VERSION_STRING})
# Force CUDA to be processed for again next time
# TODO: I'm not sure if this counts as an implementation detail of
# FindCUDA
set(${cuda_version_from_findcuda} ${CUDA_VERSION_STRING})
unset(CUDA_TOOLKIT_ROOT_DIR_INTERNAL CACHE)
# Not strictly necessary, but for good luck.
unset(CUDA_VERSION CACHE)
# Error out
message(FATAL_ERROR "FindCUDA says CUDA version is ${cuda_version_from_findcuda} (usually determined by nvcc), "
"but the CUDA headers say the version is ${cuda_version_from_header}. This often occurs "
"when you set both CUDA_HOME and CUDA_NVCC_EXECUTABLE to "
"non-standard locations, without also setting PATH to point to the correct nvcc. "
"Perhaps, try re-running this command again with PATH=${CUDA_TOOLKIT_ROOT_DIR}/bin:$PATH. "
"See above log messages for more diagnostics, and see https://github.com/pytorch/pytorch/issues/8092 for more details.")
endif()
endif()
endif()
# Optionally, find TensorRT
if(CAFFE2_USE_TENSORRT)
find_path(TENSORRT_INCLUDE_DIR NvInfer.h
HINTS ${TENSORRT_ROOT} ${CUDA_TOOLKIT_ROOT_DIR}
PATH_SUFFIXES include)
find_library(TENSORRT_LIBRARY nvinfer
HINTS ${TENSORRT_ROOT} ${CUDA_TOOLKIT_ROOT_DIR}
PATH_SUFFIXES lib lib64 lib/x64)
find_package_handle_standard_args(
TENSORRT DEFAULT_MSG TENSORRT_INCLUDE_DIR TENSORRT_LIBRARY)
if(TENSORRT_FOUND)
execute_process(COMMAND /bin/sh -c "[ -r \"${TENSORRT_INCLUDE_DIR}/NvInferVersion.h\" ] && awk '/^\#define NV_TENSORRT_MAJOR/ {print $3}' \"${TENSORRT_INCLUDE_DIR}/NvInferVersion.h\"" OUTPUT_VARIABLE TENSORRT_VERSION_MAJOR)
execute_process(COMMAND /bin/sh -c "[ -r \"${TENSORRT_INCLUDE_DIR}/NvInferVersion.h\" ] && awk '/^\#define NV_TENSORRT_MINOR/ {print $3}' \"${TENSORRT_INCLUDE_DIR}/NvInferVersion.h\"" OUTPUT_VARIABLE TENSORRT_VERSION_MINOR)
if(TENSORRT_VERSION_MAJOR)
string(STRIP ${TENSORRT_VERSION_MAJOR} TENSORRT_VERSION_MAJOR)
string(STRIP ${TENSORRT_VERSION_MINOR} TENSORRT_VERSION_MINOR)
set(TENSORRT_VERSION "${TENSORRT_VERSION_MAJOR}.${TENSORRT_VERSION_MINOR}")
#CAFFE2_USE_TRT is set in Dependencies
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DTENSORRT_VERSION_MAJOR=${TENSORRT_VERSION_MAJOR}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DTENSORRT_VERSION_MINOR=${TENSORRT_VERSION_MINOR}")
else()
message(WARNING "Caffe2: Cannot find ${TENSORRT_INCLUDE_DIR}/NvInferVersion.h. Assuming TRT 5.0 which is no longer supported. Turning the option off.")
set(CAFFE2_USE_TENSORRT OFF)
endif()
else()
message(WARNING
"Caffe2: Cannot find TensorRT library. Turning the option off.")
set(CAFFE2_USE_TENSORRT OFF)
endif()
endif()
# ---[ CUDA libraries wrapper
# find libcuda.so and lbnvrtc.so
# For libcuda.so, we will find it under lib, lib64, and then the
# stubs folder, in case we are building on a system that does not
# have cuda driver installed. On windows, we also search under the
# folder lib/x64.
set(CUDA_CUDA_LIB "${CUDA_cuda_driver_LIBRARY}" CACHE FILEPATH "")
set(CUDA_NVRTC_LIB "${CUDA_nvrtc_LIBRARY}" CACHE FILEPATH "")
if(CUDA_NVRTC_LIB AND NOT CUDA_NVRTC_SHORTHASH)
if("${PYTHON_EXECUTABLE}" STREQUAL "")
set(_python_exe "python")
else()
set(_python_exe "${PYTHON_EXECUTABLE}")
endif()
execute_process(
COMMAND "${_python_exe}" -c
"import hashlib;hash=hashlib.sha256();hash.update(open('${CUDA_NVRTC_LIB}','rb').read());print(hash.hexdigest()[:8])"
RESULT_VARIABLE _retval
OUTPUT_VARIABLE CUDA_NVRTC_SHORTHASH)
if(NOT _retval EQUAL 0)
message(WARNING "Failed to compute shorthash for libnvrtc.so")
set(CUDA_NVRTC_SHORTHASH "XXXXXXXX")
else()
string(STRIP "${CUDA_NVRTC_SHORTHASH}" CUDA_NVRTC_SHORTHASH)
message(STATUS "${CUDA_NVRTC_LIB} shorthash is ${CUDA_NVRTC_SHORTHASH}")
endif()
endif()
# Create new style imported libraries.
# Several of these libraries have a hardcoded path if CAFFE2_STATIC_LINK_CUDA
# is set. This path is where sane CUDA installations have their static
# libraries installed. This flag should only be used for binary builds, so
# end-users should never have this flag set.
# cuda
add_library(caffe2::cuda INTERFACE IMPORTED)
set_property(
TARGET caffe2::cuda PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cuda_driver)
# cudart
add_library(torch::cudart INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA)
set_property(
TARGET torch::cudart PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart_static)
else()
set_property(
TARGET torch::cudart PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart)
endif()
# nvToolsExt
add_library(torch::nvtoolsext INTERFACE IMPORTED)
set_property(
TARGET torch::nvtoolsext PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::nvToolsExt)
# cublas
add_library(caffe2::cublas INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::cublas PROPERTY INTERFACE_LINK_LIBRARIES
# NOTE: cublas is always linked dynamically
CUDA::cublas CUDA::cublasLt)
set_property(
TARGET caffe2::cublas APPEND PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart_static rt)
else()
set_property(
TARGET caffe2::cublas PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cublas CUDA::cublasLt)
endif()
# cudnn interface
# static linking is handled by USE_STATIC_CUDNN environment variable
if(CAFFE2_USE_CUDNN)
if(USE_STATIC_CUDNN)
set(CUDNN_STATIC ON CACHE BOOL "")
else()
set(CUDNN_STATIC OFF CACHE BOOL "")
endif()
find_package(CUDNN)
if(NOT CUDNN_FOUND)
message(WARNING
"Cannot find cuDNN library. Turning the option off")
set(CAFFE2_USE_CUDNN OFF)
else()
if(CUDNN_VERSION VERSION_LESS "8.0.0")
message(FATAL_ERROR "PyTorch requires cuDNN 8 and above.")
endif()
endif()
add_library(torch::cudnn INTERFACE IMPORTED)
target_include_directories(torch::cudnn INTERFACE ${CUDNN_INCLUDE_PATH})
if(CUDNN_STATIC AND NOT WIN32)
target_link_options(torch::cudnn INTERFACE
"-Wl,--exclude-libs,libcudnn_static.a")
else()
target_link_libraries(torch::cudnn INTERFACE ${CUDNN_LIBRARY_PATH})
endif()
else()
message(STATUS "USE_CUDNN is set to 0. Compiling without cuDNN support")
endif()
# curand
add_library(caffe2::curand INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::curand PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::curand_static)
else()
set_property(
TARGET caffe2::curand PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::curand)
endif()
# cufft
add_library(caffe2::cufft INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::cufft PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cufft_static_nocallback)
else()
set_property(
TARGET caffe2::cufft PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cufft)
endif()
# TensorRT
if(CAFFE2_USE_TENSORRT)
add_library(caffe2::tensorrt UNKNOWN IMPORTED)
set_property(
TARGET caffe2::tensorrt PROPERTY IMPORTED_LOCATION
${TENSORRT_LIBRARY})
set_property(
TARGET caffe2::tensorrt PROPERTY INTERFACE_INCLUDE_DIRECTORIES
${TENSORRT_INCLUDE_DIR})
endif()
# nvrtc
add_library(caffe2::nvrtc INTERFACE IMPORTED)
set_property(
TARGET caffe2::nvrtc PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::nvrtc)
# Add onnx namepsace definition to nvcc
if(ONNX_NAMESPACE)
list(APPEND CUDA_NVCC_FLAGS "-DONNX_NAMESPACE=${ONNX_NAMESPACE}")
else()
list(APPEND CUDA_NVCC_FLAGS "-DONNX_NAMESPACE=onnx_c2")
endif()
# Don't activate VC env again for Ninja generators with MSVC on Windows if CUDAHOSTCXX is not defined
# by adding --use-local-env.
if(MSVC AND CMAKE_GENERATOR STREQUAL "Ninja" AND NOT DEFINED ENV{CUDAHOSTCXX})
list(APPEND CUDA_NVCC_FLAGS "--use-local-env")
endif()
# setting nvcc arch flags
torch_cuda_get_nvcc_gencode_flag(NVCC_FLAGS_EXTRA)
# CMake 3.18 adds integrated support for architecture selection, but we can't rely on it
set(CMAKE_CUDA_ARCHITECTURES OFF)
list(APPEND CUDA_NVCC_FLAGS ${NVCC_FLAGS_EXTRA})
message(STATUS "Added CUDA NVCC flags for: ${NVCC_FLAGS_EXTRA}")
# disable some nvcc diagnostic that appears in boost, glog, glags, opencv, etc.
foreach(diag cc_clobber_ignored
set_but_not_used field_without_dll_interface
base_class_has_different_dll_interface
dll_interface_conflict_none_assumed
dll_interface_conflict_dllexport_assumed
bad_friend_decl)
list(APPEND SUPPRESS_WARNING_FLAGS --diag_suppress=${diag})
endforeach()
string(REPLACE ";" "," SUPPRESS_WARNING_FLAGS "${SUPPRESS_WARNING_FLAGS}")
list(APPEND CUDA_NVCC_FLAGS -Xcudafe ${SUPPRESS_WARNING_FLAGS})
set(CUDA_PROPAGATE_HOST_FLAGS_BLOCKLIST "-Werror")
if(MSVC)
list(APPEND CUDA_NVCC_FLAGS "--Werror" "cross-execution-space-call")
list(APPEND CUDA_NVCC_FLAGS "--no-host-device-move-forward")
endif()
# Debug and Release symbol support
if(MSVC)
if(${CAFFE2_USE_MSVC_STATIC_RUNTIME})
string(APPEND CMAKE_CUDA_FLAGS_DEBUG " -Xcompiler /MTd")
string(APPEND CMAKE_CUDA_FLAGS_MINSIZEREL " -Xcompiler /MT")
string(APPEND CMAKE_CUDA_FLAGS_RELEASE " -Xcompiler /MT")
string(APPEND CMAKE_CUDA_FLAGS_RELWITHDEBINFO " -Xcompiler /MT")
else()
string(APPEND CMAKE_CUDA_FLAGS_DEBUG " -Xcompiler /MDd")
string(APPEND CMAKE_CUDA_FLAGS_MINSIZEREL " -Xcompiler /MD")
string(APPEND CMAKE_CUDA_FLAGS_RELEASE " -Xcompiler /MD")
string(APPEND CMAKE_CUDA_FLAGS_RELWITHDEBINFO " -Xcompiler /MD")
endif()
if(CUDA_NVCC_FLAGS MATCHES "Zi")
list(APPEND CUDA_NVCC_FLAGS "-Xcompiler" "-FS")
endif()
elseif(CUDA_DEVICE_DEBUG)
list(APPEND CUDA_NVCC_FLAGS "-g" "-G") # -G enables device code debugging symbols
endif()
# Set expt-relaxed-constexpr to suppress Eigen warnings
list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr")
# Set expt-extended-lambda to support lambda on device
list(APPEND CUDA_NVCC_FLAGS "--expt-extended-lambda")
foreach(FLAG ${CUDA_NVCC_FLAGS})
string(FIND "${FLAG}" " " flag_space_position)
if(NOT flag_space_position EQUAL -1)
message(FATAL_ERROR "Found spaces in CUDA_NVCC_FLAGS entry '${FLAG}'")
endif()
string(APPEND CMAKE_CUDA_FLAGS " ${FLAG}")
endforeach()