blob: 3b191b75f69808b77e15b64677eefaded8304cf8 [file] [log] [blame]
from numbers import Number
import torch
from torch.autograd import variable
from torch.distributions import constraints
from torch.distributions.dirichlet import Dirichlet
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
class Beta(Distribution):
r"""
Beta distribution parameterized by `concentration1` and `concentration0`.
Example::
>>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
>>> m.sample() # Beta distributed with concentration concentration1 and concentration0
0.1046
[torch.FloatTensor of size 1]
Args:
concentration1 (float or Tensor or Variable): 1st concentration parameter of the distribution
(often referred to as alpha)
concentration0 (float or Tensor or Variable): 2nd concentration parameter of the distribution
(often referred to as beta)
"""
params = {'concentration1': constraints.positive, 'concentration0': constraints.positive}
support = constraints.unit_interval
has_rsample = True
def __init__(self, concentration1, concentration0):
if isinstance(concentration1, Number) and isinstance(concentration0, Number):
concentration1_concentration0 = variable([concentration1, concentration0])
else:
concentration1, concentration0 = broadcast_all(concentration1, concentration0)
concentration1_concentration0 = torch.stack([concentration1, concentration0], -1)
self._dirichlet = Dirichlet(concentration1_concentration0)
super(Beta, self).__init__(self._dirichlet._batch_shape)
def rsample(self, sample_shape=()):
value = self._dirichlet.rsample(sample_shape).select(-1, 0)
if isinstance(value, Number):
value = self._dirichlet.concentration.new([value])
return value
def log_prob(self, value):
self._validate_log_prob_arg(value)
heads_tails = torch.stack([value, 1.0 - value], -1)
return self._dirichlet.log_prob(heads_tails)
def entropy(self):
return self._dirichlet.entropy()
@property
def concentration1(self):
result = self._dirichlet.concentration[..., 0]
if isinstance(result, Number):
return torch.Tensor([result])
else:
return result
@property
def concentration0(self):
result = self._dirichlet.concentration[..., 1]
if isinstance(result, Number):
return torch.Tensor([result])
else:
return result