| from numbers import Number |
| |
| import torch |
| from torch.autograd import variable |
| from torch.distributions import constraints |
| from torch.distributions.dirichlet import Dirichlet |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| |
| class Beta(Distribution): |
| r""" |
| Beta distribution parameterized by `concentration1` and `concentration0`. |
| |
| Example:: |
| |
| >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5])) |
| >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 |
| 0.1046 |
| [torch.FloatTensor of size 1] |
| |
| Args: |
| concentration1 (float or Tensor or Variable): 1st concentration parameter of the distribution |
| (often referred to as alpha) |
| concentration0 (float or Tensor or Variable): 2nd concentration parameter of the distribution |
| (often referred to as beta) |
| """ |
| params = {'concentration1': constraints.positive, 'concentration0': constraints.positive} |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, concentration1, concentration0): |
| if isinstance(concentration1, Number) and isinstance(concentration0, Number): |
| concentration1_concentration0 = variable([concentration1, concentration0]) |
| else: |
| concentration1, concentration0 = broadcast_all(concentration1, concentration0) |
| concentration1_concentration0 = torch.stack([concentration1, concentration0], -1) |
| self._dirichlet = Dirichlet(concentration1_concentration0) |
| super(Beta, self).__init__(self._dirichlet._batch_shape) |
| |
| def rsample(self, sample_shape=()): |
| value = self._dirichlet.rsample(sample_shape).select(-1, 0) |
| if isinstance(value, Number): |
| value = self._dirichlet.concentration.new([value]) |
| return value |
| |
| def log_prob(self, value): |
| self._validate_log_prob_arg(value) |
| heads_tails = torch.stack([value, 1.0 - value], -1) |
| return self._dirichlet.log_prob(heads_tails) |
| |
| def entropy(self): |
| return self._dirichlet.entropy() |
| |
| @property |
| def concentration1(self): |
| result = self._dirichlet.concentration[..., 0] |
| if isinstance(result, Number): |
| return torch.Tensor([result]) |
| else: |
| return result |
| |
| @property |
| def concentration0(self): |
| result = self._dirichlet.concentration[..., 1] |
| if isinstance(result, Number): |
| return torch.Tensor([result]) |
| else: |
| return result |