| # Generates C++ functions that wrap ATen tensor factory methods to turn them into Variables. |
| # |
| # This writes one file: variable_factories.h |
| |
| import re |
| from typing import Optional, List |
| |
| from tools.codegen.api.types import CppSignatureGroup |
| from tools.codegen.api import cpp |
| import tools.codegen.api.python as python |
| from tools.codegen.gen import parse_native_yaml, FileManager |
| from tools.codegen.context import with_native_function |
| from tools.codegen.utils import mapMaybe |
| from tools.codegen.model import NativeFunction, TensorOptionsArguments, Variant |
| |
| OPTIONAL_TYPE_PATTERN = re.compile(r"c10::optional<(.+)>") |
| TYPE_PATTERN = re.compile(r"(?:const\s+)?([A-Z]\w+)") |
| |
| # Add 'at::' to types defined in ATen namespace, e.g. Tensor, TensorList, IntArrayRef and etc. |
| # TODO: maybe update the cpp argument API to take optional namespace argument? |
| def fully_qualified_type(argument_type: str) -> str: |
| def maybe_optional_type(type: str, is_opt: bool) -> str: |
| return f'c10::optional<{type}>' if is_opt else type |
| |
| opt_match = OPTIONAL_TYPE_PATTERN.match(argument_type) |
| is_opt = opt_match is not None |
| if opt_match: |
| argument_type = argument_type[opt_match.start(1):opt_match.end(1)] |
| match = TYPE_PATTERN.match(argument_type) |
| if match is None: |
| return maybe_optional_type(argument_type, is_opt) |
| index = match.start(1) |
| qualified_type = f'{argument_type[:index]}at::{argument_type[index:]}' |
| return maybe_optional_type(qualified_type, is_opt) |
| |
| def gen_variable_factories(out: str, native_yaml_path: str, template_path: str) -> None: |
| native_functions = parse_native_yaml(native_yaml_path).native_functions |
| fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False) |
| fm.write_with_template('variable_factories.h', 'variable_factories.h', lambda: { |
| 'generated_comment': '@' + f'generated from {fm.template_dir}/variable_factories.h', |
| 'function_definitions': list(mapMaybe(process_function, native_functions)), |
| }) |
| |
| @with_native_function |
| def process_function(f: NativeFunction) -> Optional[str]: |
| name = cpp.name(f.func) |
| has_tensor_options = python.has_tensor_options(f) |
| is_factory = has_tensor_options or name.endswith("_like") |
| |
| if Variant.function not in f.variants or not is_factory: |
| return None |
| |
| sig = CppSignatureGroup.from_native_function(f, method=False).signature |
| formals: List[str] = [] |
| exprs: List[str] = [] |
| requires_grad = 'false' |
| for arg in sig.arguments(): |
| qualified_type = fully_qualified_type(arg.type) |
| if arg.default: |
| formals.append(f'{qualified_type} {arg.name} = {arg.default}') |
| else: |
| formals.append(f'{qualified_type} {arg.name}') |
| |
| if isinstance(arg.argument, TensorOptionsArguments): |
| # note: we remove the requires_grad setting from the TensorOptions because |
| # it is ignored anyways (and we actually have an assertion that it isn't set |
| # which would fail otherwise). We handle requires_grad explicitly here |
| # instead of passing it through to the kernel. |
| exprs.append(f'at::TensorOptions({arg.name}).requires_grad(c10::nullopt)') |
| # Manually set the requires_grad bit on the result tensor. |
| requires_grad = f'{arg.name}.requires_grad()' |
| else: |
| exprs.append(arg.name) |
| |
| return f"""\ |
| inline at::Tensor {name}({', '.join(formals)}) {{ |
| at::AutoDispatchBelowADInplaceOrView guard; |
| return autograd::make_variable(at::{name}({', '.join(exprs)}), /*requires_grad=*/{requires_grad}); |
| }} |
| """ |