blob: c55c4e71dab02e2d815d890fba2a3522d8e7206e [file] [log] [blame]
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, skipCUDAIfRocm
from torch._six import inf, nan
N_values = [20] if not TEST_WITH_SLOW else [30, 300]
class TestForeach(TestCase):
foreach_bin_ops = [
torch._foreach_add,
torch._foreach_sub,
torch._foreach_mul,
torch._foreach_div,
]
foreach_bin_ops_ = [
torch._foreach_add_,
torch._foreach_sub_,
torch._foreach_mul_,
torch._foreach_div_,
]
torch_bin_ops = [
torch.add,
torch.sub,
torch.mul,
torch.div,
]
unary_ops = [
# foreach_op, foreach_op_, torch_op, bf16, complex64/128
(torch._foreach_sqrt, torch._foreach_sqrt_, torch.sqrt, True , True),
(torch._foreach_exp, torch._foreach_exp_, torch.exp, True, True),
(torch._foreach_acos, torch._foreach_acos_, torch.acos, False, True),
(torch._foreach_asin, torch._foreach_asin_, torch.asin, False, True),
(torch._foreach_atan, torch._foreach_atan_, torch.atan, False, True),
(torch._foreach_cos, torch._foreach_cos_, torch.cos, True, True),
(torch._foreach_cosh, torch._foreach_cosh_, torch.cosh, False, True),
(torch._foreach_log, torch._foreach_log_, torch.log, True, True),
(torch._foreach_log10, torch._foreach_log10_, torch.log10, True, True),
(torch._foreach_log2, torch._foreach_log2_, torch.log2, True, True),
(torch._foreach_neg, torch._foreach_neg_, torch.neg, True, True),
(torch._foreach_tan, torch._foreach_tan_, torch.tan, False, True),
(torch._foreach_tanh, torch._foreach_tanh_, torch.tanh, True, True),
(torch._foreach_sin, torch._foreach_sin_, torch.sin, False, True),
(torch._foreach_sinh, torch._foreach_sinh_, torch.sinh, False, True),
(torch._foreach_ceil, torch._foreach_ceil_, torch.ceil, False, False),
(torch._foreach_erf, torch._foreach_erf_, torch.erf, True, False),
(torch._foreach_erfc, torch._foreach_erfc_, torch.erfc, False, False),
(torch._foreach_expm1, torch._foreach_expm1_, torch.expm1, False, False),
(torch._foreach_floor, torch._foreach_floor_, torch.floor, False, False),
(torch._foreach_log1p, torch._foreach_log1p_, torch.log1p, True, False),
(torch._foreach_round, torch._foreach_round_, torch.round, False, False),
(torch._foreach_frac, torch._foreach_frac_, torch.frac, False, False),
(torch._foreach_reciprocal, torch._foreach_reciprocal_, torch.reciprocal, True, True),
(torch._foreach_sigmoid, torch._foreach_sigmoid_, torch.sigmoid, True, False),
(torch._foreach_trunc, torch._foreach_trunc_, torch.trunc, False, False),
# See test_abs
# (torch._foreach_abs, torch._foreach_abs_, torch.abs, True, True),
]
def _get_test_data(self, device, dtype, N):
if dtype in [torch.bfloat16, torch.bool, torch.float16]:
tensors = [torch.randn(N, N, device=device).to(dtype) for _ in range(N)]
elif dtype in torch.testing.get_all_int_dtypes():
tensors = [torch.randint(1, 100, (N, N), device=device, dtype=dtype) for _ in range(N)]
else:
tensors = [torch.randn(N, N, device=device, dtype=dtype) for _ in range(N)]
return tensors
def _test_bin_op_list(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_op(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors1, tensors2)
foreach_op_(tensors1, tensors2)
self.assertEqual(res, tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors1, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors1, expected)
def _test_pointwise_op(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in N_values:
values = [2 + i for i in range(N)]
for vals in [values[0], values]:
tensors = self._get_test_data(device, dtype, N)
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
if not isinstance(vals, list):
expected = [torch_op(tensors[i].to(dtype=control_dtype),
tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype),
value=values[0]).to(dtype=dtype) for i in range(N)]
else:
expected = [torch_op(tensors[i].to(dtype=control_dtype),
tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype),
value=values[i]).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors, tensors1, tensors2, vals)
foreach_op_(tensors, tensors1, tensors2, vals)
self.assertEqual(res, tensors)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
# test error cases
for op in [torch._foreach_addcmul, torch._foreach_addcmul_, torch._foreach_addcdiv, torch._foreach_addcdiv_]:
tensors = self._get_test_data(device, dtype, N)
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
op(tensors, tensors1, tensors2, [2 for _ in range(N + 1)])
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
op(tensors, tensors1, tensors2, [2 for _ in range(N - 1)])
tensors = self._get_test_data(device, dtype, N + 1)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 21 and 20"):
op(tensors, tensors1, tensors2, [2 for _ in range(N)])
tensors1 = self._get_test_data(device, dtype, N + 1)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 21 and 20"):
op(tensors, tensors1, tensors2, [2 for _ in range(N)])
def _test_bin_op_list_alpha(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in [30, 300]:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
alpha = 2
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_op(tensors1[i].to(dtype=control_dtype),
torch.mul(tensors2[i].to(dtype=control_dtype),
alpha)).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors1, tensors2, alpha=alpha)
foreach_op_(tensors1, tensors2, alpha=alpha)
self.assertEqual(res, tensors1)
if dtype == torch.bool:
expected = [e.to(torch.bool) for e in expected]
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors1, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors1, expected)
#
# Unary ops
#
@dtypes(*(torch.testing.floating_and_complex_types_and(torch.bfloat16, torch.half)))
def test_unary_ops(self, device, dtype):
for fe_op, fe_op_, torch_op, support_bfloat16, support_complex in self.unary_ops:
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
if self.device_type == 'cpu' and dtype == torch.half and torch_op not in [torch.neg, torch.frac, torch.reciprocal]:
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'Half\'"):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'Half\'"):
res = fe_op(tensors1)
break
if dtype == torch.bfloat16 and not support_bfloat16:
if self.device_type == 'cuda' or torch_op in [torch.sinh, torch.cosh]:
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'BFloat16\'"):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'BFloat16\'"):
res = fe_op(tensors1)
break
if dtype in [torch.complex64, torch.complex128] and not support_complex:
if not (self.device_type == 'cpu' and torch_op in [torch.sigmoid]):
# not using assertRaisesRegex due to different error messages
with self.assertRaises(RuntimeError):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaises(RuntimeError):
res = fe_op(tensors1)
break
expected = [torch_op(tensors1[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = fe_op(tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
fe_op_(tensors1)
self.assertEqual(res, tensors1)
else:
self.assertEqual(res, expected)
fe_op_(tensors1)
self.assertEqual(res, tensors1)
# Separate test for abs due to a lot of special cases
# Absolute value of a complex number a + bj is defined as sqrt(a^2 + b^2), i.e. a floating point
@dtypes(*(torch.testing.floating_and_complex_types_and(torch.bfloat16, torch.half)))
def test_abs(self, device, dtype):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch.abs(tensors1[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = torch._foreach_abs(tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
torch._foreach_abs_(tensors1)
self.assertEqual(res, tensors1)
else:
expected = [torch.abs(tensors1[i]) for i in range(N)]
self.assertEqual(res, expected)
if dtype in [torch.complex64, torch.complex128]:
with self.assertRaisesRegex(RuntimeError, r"In-place abs is not supported for complex tensors."):
torch._foreach_abs_(tensors1)
else:
torch._foreach_abs_(tensors1)
self.assertEqual(res, tensors1)
#
# Pointwise ops
#
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_addcmul(self, device, dtype):
if self.device_type == 'cpu':
if dtype == torch.half:
with self.assertRaisesRegex(RuntimeError, r"\"addcmul_cpu_out\" not implemented for \'Half\'"):
self._test_pointwise_op(device, dtype, torch._foreach_addcmul,
torch._foreach_addcmul_, torch.addcmul)
return
self._test_pointwise_op(device, dtype, torch._foreach_addcmul, torch._foreach_addcmul_, torch.addcmul)
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_addcdiv(self, device, dtype):
if dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.uint8]:
with self.assertRaisesRegex(RuntimeError,
"Integer division with addcdiv is no longer supported, and in a future"):
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv, torch._foreach_addcdiv_, torch.addcdiv)
return
if self.device_type == 'cpu':
if dtype == torch.half:
with self.assertRaisesRegex(RuntimeError, r"\"addcdiv_cpu_out\" not implemented for \'Half\'"):
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv,
torch._foreach_addcdiv_, torch.addcdiv)
return
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv, torch._foreach_addcdiv_, torch.addcdiv)
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_min_max(self, device, dtype):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected_max = [torch.max(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
expected_min = [torch.min(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res_max = torch._foreach_maximum(tensors1, tensors2)
self.assertEqual(res_max, expected_max)
res_min = torch._foreach_minimum(tensors1, tensors2)
self.assertEqual(res_min, expected_min)
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False)))
def test_max_min_float_inf_nan(self, device, dtype):
a = [
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
]
b = [
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
]
expected = [torch.max(a1, b1) for a1, b1 in zip(a, b)]
res = torch._foreach_maximum(a, b)
self.assertEqual(expected, res)
expected = [torch.min(a1, b1) for a1, b1 in zip(a, b)]
res = torch._foreach_minimum(a, b)
self.assertEqual(expected, res)
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False)))
def test_max_min_inf_nan(self, device, dtype):
a = [
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([-inf], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype)
]
b = [
torch.tensor([-inf], device=device, dtype=dtype),
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype)
]
expected_max = [torch.max(a1, b1) for a1, b1 in zip(a, b)]
res_max = torch._foreach_maximum(a, b)
self.assertEqual(expected_max, res_max)
expected_min = [torch.min(a1, b1) for a1, b1 in zip(a, b)]
res_min = torch._foreach_minimum(a, b)
self.assertEqual(expected_min, res_min)
#
# Ops with scalar
#
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
if dtype == torch.bool:
self.assertEqual(res, expected)
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
if foreach_bin_op_ == torch._foreach_div_ and dtype in torch.testing.integral_types() and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError,
"can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
# TODO[type promotion]: Fix once type promotion is enabled.
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
self.assertEqual(res, [e.to(dtype) for e in expected])
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, expected)
# TODO[Fix scalar list]:
# We need to update codegen to correctly handle function overloads with float[] and int[].
# As optimizers work with float tensors, the result will always be torch.float32 for now.
# Current schema is using 'float[]' as scalar list type.
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [1 for _ in range(N)]
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes() or dtype == torch.bool) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
res = foreach_bin_op(tensors, scalars)
if dtype == torch.bool:
self.assertEqual(res, [torch_bin_op(t.to(torch.float32), s) for t, s in zip(tensors, scalars)])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
if dtype in torch.testing.integral_types():
if self.device_type == 'cpu':
self.assertEqual(res, [e.to(torch.float32) for e in expected])
else:
# TODO[type promotion]: Fix once type promotion is enabled.
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types() and self.device_type == 'cpu':
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
else:
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3.3
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_bin_op(t.to(dtype=control_dtype),
scalar) for t in tensors]
if (dtype is torch.float16 or dtype is torch.bfloat16):
expected = [e.to(dtype=dtype) for e in expected]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
res = foreach_bin_op(tensors, scalar)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
foreach_bin_op_(tensors, scalar)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [1.1 for _ in range(N)]
# If incoming dtype is float16 or bfloat16, runs in float32 and casts output back to dtype.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_bin_op(t.to(dtype=control_dtype),
s) for t, s in zip(tensors, scalars)]
if (dtype is torch.float16 or dtype is torch.bfloat16):
expected = [e.to(dtype=dtype) for e in expected]
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes() or dtype == torch.bool) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
res = foreach_bin_op(tensors, scalars)
if dtype == torch.bool:
# see TODO[Fix scalar list]
self.assertEqual(res, [torch_bin_op(t.to(torch.float32), s) for t, s in zip(tensors, scalars)])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
# see TODO[Fix scalar list]
self.assertEqual(res, [e.to(dtype) for e in expected])
foreach_bin_op_(tensors, scalars)
self.assertEqual(tensors, res)
return
else:
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types() and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
foreach_bin_op_(tensors, scalars)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3 + 5j
expected = [torch_bin_op(t, scalar) for t in tensors]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
if dtype in torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=True) and \
self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "value cannot be converted to type"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "value cannot be converted to type"):
foreach_bin_op(tensors, scalar)
return
res = foreach_bin_op(tensors, scalar)
self.assertEqual(res, expected)
if dtype not in [torch.complex64, torch.complex128]:
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [3 + 5j for _ in range(N)]
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
with self.assertRaisesRegex(TypeError, "argument 'scalars' must be tuple of floats"):
res = foreach_bin_op(tensors, scalars)
with self.assertRaisesRegex(TypeError, "argument 'scalars' must be tuple of floats"):
foreach_bin_op_(tensors, scalars)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = True
if dtype == torch.bool:
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
return
if foreach_bin_op == torch._foreach_sub and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator"):
res = foreach_bin_op(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator"):
foreach_bin_op_(tensors, scalar)
elif foreach_bin_op == torch._foreach_sub and self.device_type == 'cuda':
res = foreach_bin_op(tensors, scalar)
self.assertEqual(res, foreach_bin_op(tensors, 1))
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
else:
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
# TODO[type promotion]: Fix once type promotion is enabled.
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
if foreach_bin_op == torch._foreach_div and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired "):
foreach_bin_op_(tensors, scalar)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [True for _ in range(N)]
if dtype == torch.bool:
if self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
return
else:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
foreach_bin_op(tensors, scalars)
else:
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired"):
foreach_bin_op_(tensors, scalars)
res = foreach_bin_op(tensors, scalars)
for r in res:
self.assertTrue(r.dtype == torch.float32)
else:
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes()) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
if foreach_bin_op == torch._foreach_sub:
if self.device_type == "cpu":
# see TODO[Fix scalar list]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [r.to(torch.float32) for r in [torch_bin_op(t, 1) for t in tensors]])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the "):
foreach_bin_op_(tensors, scalars)
else:
self.assertEqual(res, [torch_bin_op(t, 1) for t in tensors])
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
else:
# see TODO[Fix scalar list]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [r.to(dtype) for r in [torch_bin_op(t, 1) for t in tensors]])
else:
self.assertEqual(res, [torch_bin_op(t, 1) for t in tensors])
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
else:
if self.device_type == "cpu":
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
res = foreach_bin_op(tensors, scalars)
# see TODO[Fix scalar list]
if dtype in torch.testing.integral_types():
self.assertEqual(res, [e.to(torch.float32) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired "):
foreach_bin_op_(tensors, scalars)
else:
foreach_bin_op_(tensors, scalars)
self.assertEqual(tensors, expected)
else:
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_with_different_size_tensors(self, device, dtype):
if dtype == torch.bool:
return
tensors = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
expected = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
torch._foreach_add_(tensors, 1)
self.assertEqual(expected, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_overlapping_tensors(self, device, dtype):
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
expected = [torch.tensor([[[2, 2, 2]], [[2, 2, 2]]], dtype=dtype, device=device)]
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected[0] = expected[0].to(torch.int64).add(1)
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, expected)
def test_bin_op_scalar_with_different_tensor_dtypes(self, device):
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, 1))
#
# Ops with list
#
def test_bin_op_list_error_cases(self, device):
for bin_op, bin_op_ in zip(self.foreach_bin_ops, self.foreach_bin_ops_):
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
bin_op_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
bin_op_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
bin_op_(tensors1, tensors2)
# Different dtypes
tensors1 = [torch.zeros(10, 10, device=device, dtype=torch.float) for _ in range(10)]
tensors2 = [torch.ones(10, 10, device=device, dtype=torch.int) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
bin_op_(tensors1, tensors2)
# different devices
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0")
tensor2 = torch.ones(10, 10, device="cuda:1")
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
bin_op([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
bin_op_([tensor1], [tensor2])
# Corresponding tensors with different sizes
tensors1 = [torch.zeros(10, 10, device=device) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "Corresponding tensors in lists must have the same size"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, r", got \[10, 10\] and \[11, 11\]"):
bin_op_(tensors1, tensors2)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list(self, device, dtype):
self._test_bin_op_list(device, dtype, torch._foreach_add, torch._foreach_add_, torch.add)
self._test_bin_op_list_alpha(device, dtype, torch._foreach_add, torch._foreach_add_, torch.add)
@dtypes(*torch.testing.get_all_dtypes())
def test_sub_list(self, device, dtype):
if dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
self._test_bin_op_list(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
self._test_bin_op_list_alpha(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
else:
self._test_bin_op_list(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
self._test_bin_op_list_alpha(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
@dtypes(*torch.testing.get_all_dtypes())
def test_mul_list(self, device, dtype):
self._test_bin_op_list(device, dtype, torch._foreach_mul, torch._foreach_mul_, torch.mul)
@dtypes(*torch.testing.get_all_dtypes())
def test_div_list(self, device, dtype):
if dtype in torch.testing.integral_types_and(torch.bool):
if self.device_type == 'cpu':
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
self._test_bin_op_list(device, dtype, torch._foreach_div, torch._foreach_div_, torch.div)
else:
self.skipTest("Skipped! See https://github.com/pytorch/pytorch/issues/44489")
return
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
if dtype in [torch.bfloat16, torch.bool, torch.float16]:
tensors2 = [torch.zeros(N, N, device=device, dtype=dtype).add(2) for _ in range(N)]
else:
tensors2 = self._get_test_data(device, dtype, N)
expected = [torch.div(tensors1[i], tensors2[i]) for i in range(N)]
res = torch._foreach_div(tensors1, tensors2)
torch._foreach_div_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(tensors1, res)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_different_sizes(self, device, dtype):
tensors1 = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
tensors2 = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
res = torch._foreach_add(tensors1, tensors2)
torch._foreach_add_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(res, [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_slow_path(self, device, dtype):
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
res = torch._foreach_add([tensor1], [tensor2.t()])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
# non contiguous
tensor1 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
tensor2 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
res = torch._foreach_add([tensor1], [tensor2])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()