| #include <torch/csrc/utils/python_dispatch.h> |
| #include <torch/csrc/jit/frontend/function_schema_parser.h> |
| |
| #include <ATen/core/op_registration/op_registration.h> |
| #include <ATen/ATen.h> |
| |
| #include <pybind11/operators.h> |
| |
| #include <iostream> |
| |
| namespace py = pybind11; |
| |
| namespace torch { |
| namespace impl { |
| namespace dispatch { |
| |
| c10::optional<c10::DispatchKey> parseDispatchKey(const std::string& k) { |
| static std::unordered_map<std::string, c10::DispatchKey> key_map = { |
| {"cpu", c10::DispatchKey::CPU}, |
| {"cuda", c10::DispatchKey::CUDA}, |
| {"xla", c10::DispatchKey::XLA}, |
| {"autograd", c10::DispatchKey::Autograd}, |
| {"", c10::DispatchKey::Undefined}, |
| }; |
| auto it = key_map.find(k); |
| TORCH_CHECK(it != key_map.end(), "could not parse ", k); |
| if (it->second == c10::DispatchKey::Undefined) { |
| return c10::nullopt; |
| } else { |
| return c10::make_optional(it->second); |
| } |
| } |
| |
| c10::AliasAnalysisKind parseAliasAnalysisKind(const std::string& k) { |
| static std::unordered_map<std::string, c10::AliasAnalysisKind> key_map = { |
| {"CONSERVATIVE", c10::AliasAnalysisKind::CONSERVATIVE}, |
| {"FROM_SCHEMA", c10::AliasAnalysisKind::FROM_SCHEMA}, |
| {"PURE_FUNCTION", c10::AliasAnalysisKind::PURE_FUNCTION}, |
| {"", c10::AliasAnalysisKind::FROM_SCHEMA}, // default |
| }; |
| auto it = key_map.find(k); |
| TORCH_CHECK(it != key_map.end(), "could not parse ", k); |
| return it->second; |
| } |
| |
| |
| template <typename Func> |
| inline c10::CppFunction dispatch_str(const char* key, Func&& raw_f) { |
| auto mb_key = parseDispatchKey(key); |
| if (mb_key) { |
| return c10::dispatch(*mb_key, std::move(raw_f)); |
| } else { |
| c10::CppFunction f(std::forward<Func>(raw_f)); |
| return f; |
| } |
| } |
| |
| void initDispatchBindings(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::class_<c10::OperatorHandle>(m, "_DispatchOperatorHandle") |
| .def("schema", &c10::OperatorHandle::schema); |
| |
| // TODO: figure out how to do chaining |
| py::class_<c10::Library>(m, "_DispatchModule") |
| .def("def_", [](py::object self, const char* schema, const char* alias) { |
| self.cast<c10::Library&>().def(torch::schema(schema, parseAliasAnalysisKind(alias))); |
| return self; |
| }, "", py::arg("schema"), py::arg("alias") = "") |
| // Simulated "legacy" def where alias analysis kind is not set. |
| // Ordinarily this can only be exercised from RegisterOperators() API |
| // but I am not going to bind that here |
| .def("def_legacy", [](py::object self, const char* schema) { |
| self.cast<c10::Library&>().def(torch::jit::parseSchema(schema)); |
| return self; |
| }, "", py::arg("schema")) |
| // We can't conveniently turn Python functions into valid functions |
| // in the dispatcher. So instead we provide a bunch of precanned |
| // functions for testing purposes. You're NOT intended to actually |
| // call these functions; they're just here so we can actually register |
| // something |
| // |
| // Mangling scheme: args_rets. One character per. |
| // t = Tensor |
| .def("def_name_t_t", [](py::object self, const char* name, const char* dispatch, const char* debug) { |
| self.cast<c10::Library&>().def( |
| name, |
| dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug) |
| ); |
| return self; |
| }, "", py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("debug") = "default_def_name_t_t") |
| .def("def_schema_t_t", [](py::object self, const char* schema, const char* dispatch, const char* alias, const char* debug) { |
| self.cast<c10::Library&>().def( |
| torch::schema(schema, parseAliasAnalysisKind(alias)), |
| dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug) |
| ); |
| return self; |
| }, "", py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("alias") = "", |
| py::arg("debug") = "default_def_schema_t_t") |
| // TODO: maybe consider deduplicating the definitions here, it's getting |
| // pretty long |
| .def("impl_t_t", [](py::object self, const char* name, const char* dispatch, const char* debug) { |
| self.cast<c10::Library&>().impl( |
| name, |
| dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug) |
| ); |
| return self; |
| }, "", py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("debug") = "impl_t_t") |
| .def("impl_tt_t", [](py::object self, const char* name, const char* dispatch, const char* debug) { |
| self.cast<c10::Library&>().impl( |
| name, |
| dispatch_str(dispatch, [](const at::Tensor& a, const at::Tensor& b) { |
| return a; |
| }).debug(debug) |
| ); |
| return self; |
| }, "", py::arg("name"), py::arg("dispatch") = "", py::arg("debug") = "") |
| ; |
| |
| m.def("_dispatch_import", [](std::string name) { |
| // This is a wee bit dodgy right now, but the "underlying" API is much |
| // easier to test than the high level (using TORCH_LIBRARY, e.g.) |
| if (name.empty()) { |
| return std::make_unique<c10::Library>(c10::Library::FRAGMENT, "_", c10::DispatchKey::CatchAll, "/dev/null", 0); |
| } else { |
| return std::make_unique<c10::Library>(c10::Library::FRAGMENT, name, c10::nullopt, "/dev/null", 0); |
| } |
| }); |
| |
| m.def("_dispatch_dump", [](const char* name) -> std::string { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| if (!op) { |
| return ""; |
| } else { |
| return op->dumpState(); |
| } |
| }); |
| |
| m.def("_dispatch_check_invariants", [](const char* name) { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| if (!op) { |
| } else { |
| return op->checkInvariants(); |
| } |
| }); |
| |
| m.def("_dispatch_check_all_invariants", []() { |
| c10::Dispatcher::singleton().checkInvariants(); |
| }); |
| } |
| |
| }}} // namespace torch::impl::dispatch |