blob: 57c9ac0168afd2ce4c9c6062df33df1e031c1361 [file] [log] [blame]
import math
import torch
from torch._inductor.cuda_properties import get_device_capability
def _has_triton():
if not torch.cuda.is_available():
return False
try:
import triton
return triton is not None and get_device_capability() >= (7, 0)
except ImportError:
return False
def check(cond, msg):
if not cond:
raise ValueError(msg)
def check_bsr_layout(f_name, t):
check(
t.layout == torch.sparse_bsr,
f"{f_name}(): only BSR sparse format is supported for the sparse argument.",
)
def check_device(f_name, t, device):
check(
t.device == device and t.device.type == "cuda",
f"{f_name}(): all inputs are expected to be on the same GPU device.",
)
def check_mm_compatible_shapes(f_name, lhs, rhs):
check(
lhs.dim() >= 2 and rhs.dim() >= 2,
f"{f_name}(): all inputs involved in the matrix product are expected to be at least 2D, "
f"but got lhs.dim() == {lhs.dim()} and rhs.dim() == {rhs.dim()}."
)
m, kl = lhs.shape[-2:]
kr, n = rhs.shape[-2:]
check(
kl == kr,
f"{f_name}(): arguments' sizes involved in the matrix product are not compatible for matrix multiplication, "
f"got lhs.shape[-1] == {kl} which is not equal to rhs.shape[-2] == {kr}.",
)
def check_dtype(f_name, t, dtype, *additional_dtypes):
check(
t.dtype == dtype
and t.dtype in ((torch.half, torch.bfloat16, torch.float) + tuple(*additional_dtypes)),
f"{f_name}(): all inputs are expected to be of the same dtype "
f"and one of (half, bfloat16, float32) or {additional_dtypes}, "
f"but got dtype == {t.dtype}.",
)
def check_blocksize(f_name, blocksize):
assert len(blocksize) == 2
def is_power_of_two(v):
return not (v & (v - 1))
def is_compatible_blocksize(b):
res = True
for blocksize in b:
# Triton loads only blocks which are at least 16 and powers of 2.
res = (blocksize >= 16 and is_power_of_two(blocksize)) and res
return res
check(
is_compatible_blocksize(blocksize),
f"{f_name}(): sparse inputs' blocksize ({blocksize[0]}, {blocksize[1]}) "
"should be at least 16 and a power of 2 in each dimension.",
)
def make_triton_contiguous(t):
if t.stride(-2) > 1 and t.stride(-1) > 1:
return t.contiguous()
else:
return t
def broadcast_batch_dims(f_name, *tensors):
try:
return torch.broadcast_shapes(*(t.shape[:-2] for t in tensors))
except Exception:
check(False, f"{f_name}(): inputs' batch dimensions are not broadcastable!")
def slicer(dim, slice_range, *tensors):
for t in tensors:
slices = [slice(None)] * t.dim()
slices[dim] = slice_range
yield t[slices]
def multidim_slicer(dims, slices, *tensors):
for t in tensors:
s = [slice(None)] * t.dim()
for d, d_slice in zip(dims, slices):
if d is not None:
s[d] = d_slice
yield t[s]
def ptr_stride_extractor(*tensors):
for t in tensors:
yield t
yield from t.stride()
def grid_partitioner(full_grid, grid_blocks, tensor_dims_map):
assert 0 <= len(full_grid) <= 3
assert 0 <= len(grid_blocks) <= 3
import itertools
def generate_grid_points():
for fg, mg in zip(full_grid, grid_blocks):
yield range(0, fg, mg)
def generate_sliced_tensors(slices):
for t, t_dims in tensor_dims_map.items():
yield next(multidim_slicer(t_dims, slices, t))
for grid_point in itertools.product(*generate_grid_points()):
grid = [min(fg - gp, mg) for fg, gp, mg in zip(full_grid, grid_point, grid_blocks)]
slices = [slice(gp, gp + g) for gp, g in zip(grid_point, grid)]
# grid_points are iterated in a "contiguous" order, i.e.
# left dimensions traversed slower than right dimensions.
# This order is reversed for CUDA grids.
yield grid[::-1], *generate_sliced_tensors(slices)
def launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks=None):
# cuda_max_grid = (2 ** 31 - 1, 2 ** 16 - 1, 2 ** 16 - 1)
cuda_max_grid = (2147483647, 65535, 65535)[::-1]
if grid_blocks is None:
grid_blocks = cuda_max_grid
else:
def valid_grid_dim(g, mg):
if g is None:
return mg
else:
# grid must be at least 1 and no greater than mg
return max(1, min(g, mg))
grid_blocks = tuple(
valid_grid_dim(g, mg) for g, mg in zip(grid_blocks, cuda_max_grid)
) # type: ignore[assignment]
for grid, *sliced_tensors in grid_partitioner(full_grid, grid_blocks, tensor_dims_map):
kernel(grid, *sliced_tensors)
def prepare_inputs(bsr, *dense_tensors):
# Introduce fake batch dimension if not present for convenience.
crow_indices = bsr.crow_indices().unsqueeze(0)
col_indices = bsr.col_indices().unsqueeze(0)
values = make_triton_contiguous(bsr.values().unsqueeze(0))
tensors = [make_triton_contiguous(t.unsqueeze(0)) for t in dense_tensors]
# Compute broadcasted batch dimension
batch_dims_broadcasted = torch.broadcast_shapes(values.shape[:-3], *(t.shape[:-2] for t in tensors))
# Broadcast batch dimensions and squash
def batch_broadcast_and_squash(t, batch_dims, invariant_dims):
return t.broadcast_to(batch_dims + invariant_dims).flatten(
0, len(batch_dims) - 1
)
crow_indices = batch_broadcast_and_squash(
crow_indices, batch_dims_broadcasted, (-1,)
)
col_indices = batch_broadcast_and_squash(
col_indices, batch_dims_broadcasted, (-1,)
)
values = batch_broadcast_and_squash(
values, batch_dims_broadcasted, values.shape[-3:]
)
tensors = [
batch_broadcast_and_squash(t, batch_dims_broadcasted, t.shape[-2:]) for t in tensors
]
return crow_indices, col_indices, values, *tensors
def broadcast_batch_dims_bsr(f_name, bsr, *tensors):
batch_shape = broadcast_batch_dims(f_name, bsr, *tensors)
crow_indices = bsr.crow_indices().broadcast_to(batch_shape + (-1,))
col_indices = bsr.col_indices().broadcast_to(batch_shape + (-1,))
values = bsr.values().broadcast_to(batch_shape + bsr.values().shape[-3:])
size = batch_shape + bsr.shape[-2:]
return torch.sparse_compressed_tensor(crow_indices, col_indices, values, size=size, layout=bsr.layout)
# NOTE: this function will ALWAYS create a view
def tile_to_blocksize(t, blocksize):
*rest, m, n = t.shape
new_shape = rest + [
m // blocksize[0],
blocksize[0],
n // blocksize[1],
blocksize[1],
]
return t.reshape(new_shape).transpose(-3, -2)
if _has_triton():
import triton
import triton.language as tl
from typing import Optional, Tuple
@triton.jit
def _sampled_addmm_kernel(
alpha,
beta,
IS_BETA_ZERO: tl.constexpr,
BLOCKSIZE_ROW: tl.constexpr,
BLOCKSIZE_COL: tl.constexpr,
k,
TILE_K: tl.constexpr,
values_ptr,
values_batch_stride,
values_nnz_stride,
values_row_block_stride,
values_col_block_stride,
crow_indices_ptr,
crow_indices_batch_stride,
crow_indices_stride,
col_indices_ptr,
col_indices_batch_stride,
col_indices_stride,
mat1_ptr,
mat1_batch_stride,
mat1_tiled_row_stride,
mat1_tiled_col_stride,
mat1_row_block_stride,
mat1_col_block_stride,
mat2_ptr,
mat2_batch_stride,
mat2_tiled_row_stride,
mat2_tiled_col_stride,
mat2_row_block_stride,
mat2_col_block_stride,
acc_dtype: tl.constexpr,
allow_tf32: tl.constexpr,
):
batch_pid = tl.program_id(axis=1)
row_block_pid = tl.program_id(axis=0)
crow_indices_offset_ptr = (
crow_indices_ptr
+ crow_indices_batch_stride * batch_pid
+ crow_indices_stride * row_block_pid
)
nnz_offset = tl.load(crow_indices_offset_ptr)
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
# Compute nnz for the row with number row_block_pid.
# If it is zero, skip the row.
row_nnz = nnz_offset_next - nnz_offset
if row_nnz == 0:
return
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
# Pointers are set to the first block of the current row.
values_block_ptrs = (
values_ptr
+ values_batch_stride * batch_pid
+ values_nnz_stride * nnz_offset
+ values_row_block_stride * row_block_arange[:, None]
+ values_col_block_stride * col_block_arange[None, :]
)
col_index_nnz_ptr = (
col_indices_ptr
+ col_indices_batch_stride * batch_pid
+ col_indices_stride * nnz_offset
)
# Advance mat1 to the current tiled row, ignore columns.
mat1_block_ptrs = (
mat1_ptr
+ mat1_batch_stride * batch_pid
+ mat1_tiled_row_stride * row_block_pid
+ mat1_row_block_stride * row_block_arange[:, None]
)
# Advance mat2 in batch and block col dimension.
mat2_block_ptrs = (
mat2_ptr
+ mat2_batch_stride * batch_pid
+ mat2_col_block_stride * col_block_arange[None, :]
)
k_tile_arange = tl.arange(0, TILE_K)
for _ in range(row_nnz):
acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)
# find column block index
col_block = tl.load(col_index_nnz_ptr)
for k_tile in range(0, k, TILE_K):
k_offsets = k_tile + k_tile_arange
mask_k = k_offsets < k
mat1_block = tl.load(
mat1_block_ptrs
+ mat1_col_block_stride * k_offsets[None, :],
mask=mask_k[None, :], other=0.0
)
mat2_block = tl.load(
mat2_block_ptrs
+ mat2_tiled_col_stride * col_block
+ mat2_row_block_stride * k_offsets[:, None],
mask=mask_k[:, None], other=0.0
)
acc_block += tl.dot(mat1_block, mat2_block, allow_tf32=allow_tf32)
if IS_BETA_ZERO:
acc_block *= alpha
else:
acc_block = alpha * acc_block + beta * tl.load(values_block_ptrs)
# write result
tl.store(values_block_ptrs, acc_block.to(values_ptr.dtype.element_ty))
# advance val/col_index ptrs to the next block in the row.
values_block_ptrs += values_nnz_stride
col_index_nnz_ptr += col_indices_stride
@triton.jit
def _bsr_strided_dense_rowspace_kernel(
BLOCKSIZE_ROW: tl.constexpr,
BLOCKSIZE_COL: tl.constexpr,
# values prologue
values_ptr,
values_batch_stride,
values_nnz_stride,
values_row_block_stride,
values_col_block_stride,
# values epilogue
# crow_indices prologue
crow_indices_ptr,
crow_indices_batch_stride,
crow_indices_stride,
# crow_indices epilogue
# col_indices prologue
col_indices_ptr,
col_indices_batch_stride,
col_indices_stride,
# col_indices epilogue
# dense prologue
dense_ptr,
dense_batch_stride,
dense_tiled_row_stride,
dense_tiled_col_stride,
dense_row_block_stride,
dense_col_block_stride,
# dense epilogue
# output prologue
output_ptr,
output_batch_stride,
output_tiled_row_stride,
output_tiled_col_stride,
output_row_block_stride,
output_col_block_stride,
# output epilogue
acc_dtype: tl.constexpr,
allow_tf32: tl.constexpr,
GROUP_SIZE_ROW: tl.constexpr,
):
batch_pid = tl.program_id(axis=2)
row_block_pid = tl.program_id(axis=0)
col_block_pid = tl.program_id(axis=1)
n_block_rows = tl.num_programs(axis=0)
n_block_cols = tl.num_programs(axis=1)
row_block_pid, col_block_pid = tl.swizzle2d(
row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
)
crow_indices_offset_ptr = (
crow_indices_ptr
+ crow_indices_batch_stride * batch_pid
+ crow_indices_stride * row_block_pid
)
nnz_offset = tl.load(crow_indices_offset_ptr)
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
# Compute nnz for the row with number row_block_pid.
# If it is zero, skip the row.
row_nnz = nnz_offset_next - nnz_offset
if row_nnz == 0:
return
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
# Pointers are set to the first block of the current row.
values_block_ptrs = (
values_ptr
+ values_batch_stride * batch_pid
+ values_nnz_stride * nnz_offset
+ values_row_block_stride * row_block_arange[:, None]
+ values_col_block_stride * col_block_arange[None, :]
)
# NOTE: dense is advanced into all dimensions but the tiled row one.
# That will be advanced in the loop according to values in col_indices.
dense_block_ptrs = (
dense_ptr
+ dense_batch_stride * batch_pid
+ dense_tiled_col_stride * col_block_pid
+ dense_row_block_stride * col_block_arange[:, None]
+ dense_col_block_stride * row_block_arange[None, :]
)
# Pointers are set to exact write-to locations
output_ptrs = (
output_ptr
+ output_batch_stride * batch_pid
+ output_tiled_row_stride * row_block_pid
+ output_tiled_col_stride * col_block_pid
+ output_row_block_stride * row_block_arange[:, None]
+ output_col_block_stride * row_block_arange[None, :]
)
# Set pointer to the first nonzero element in the current row
col_index_nnz_ptr = (
col_indices_ptr
+ col_indices_batch_stride * batch_pid
+ col_indices_stride * nnz_offset
)
output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_ROW), dtype=acc_dtype)
for _ in range(row_nnz):
values_block = tl.load(values_block_ptrs)
# find which row of dense needs to get loaded
# for multiplication with values_block.
dense_row_idx = tl.load(col_index_nnz_ptr)
dense_block = tl.load(dense_block_ptrs + dense_tiled_row_stride * dense_row_idx)
# do block mm
output_acc_block += tl.dot(values_block, dense_block, allow_tf32=allow_tf32)
# move val/col_index ptrs to the next block in the row
values_block_ptrs += values_nnz_stride
col_index_nnz_ptr += col_indices_stride
# write back the result
tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))
def _run_dense_rowspace_kernel(
blocksize, values, crow_indices, col_indices, dense, output, max_grid
):
n_batches = dense.size(0)
n_block_rows = crow_indices.size(-1) - 1
n_block_cols = dense.size(-3)
full_grid = (n_batches, n_block_cols, n_block_rows)
if max_grid is not None:
grid_blocks = tuple(max_grid[:3][::-1]) + (None,) * (3 - len(max_grid[:3]))
else:
grid_blocks = None
tensor_dims_map = {
values: (0, None, None),
crow_indices: (0, None, -1),
col_indices: (0, None, None),
dense: (0, -3, None),
output: (0, -3, -4)
}
if values.dtype in (torch.half, torch.bfloat16):
acc_dtype = tl.float32
allow_tf32 = True
else:
acc_dtype = tl.float64
allow_tf32 = False
def kernel(grid, *sliced_tensors):
_bsr_strided_dense_rowspace_kernel[grid](
*blocksize,
*ptr_stride_extractor(*sliced_tensors),
acc_dtype=acc_dtype,
allow_tf32=allow_tf32,
GROUP_SIZE_ROW=4,
num_stages=1,
num_warps=4
)
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
def _run_sampled_addmm_kernel(
alpha, beta, is_beta_zero,
blocksize, k, tile_k,
values, crow_indices, col_indices,
mat1, mat2,
max_grid
):
n_batches = values.size(0)
n_block_rows = crow_indices.size(-1) - 1
full_grid = (n_batches, n_block_rows)
if max_grid is not None:
grid_blocks = tuple(max_grid[:2][::-1]) + (None,) * (2 - len(max_grid[:2]))
else:
grid_blocks = None
tensor_dims_map = {
values: (0, None),
crow_indices: (0, -1),
col_indices: (0, None),
mat1: (0, -4),
mat2: (0, None),
}
if values.dtype in (torch.half, torch.bfloat16):
acc_dtype = tl.float32
allow_tf32 = True
else:
acc_dtype = tl.float64
allow_tf32 = False
def kernel(grid, *sliced_tensors):
_sampled_addmm_kernel[grid](
alpha, beta, is_beta_zero,
*blocksize, k, tile_k,
*ptr_stride_extractor(*sliced_tensors),
acc_dtype=acc_dtype,
allow_tf32=allow_tf32,
num_stages=1,
num_warps=4
)
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
def sampled_addmm(
input: torch.Tensor,
mat1: torch.Tensor,
mat2: torch.Tensor,
*,
beta=1.0,
alpha=1.0,
out: Optional[torch.Tensor] = None,
skip_checks: bool = False,
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
):
f_name = "sampled_addmm"
check_bsr_layout(f_name, input)
input_broadcasted = broadcast_batch_dims_bsr(f_name, input, mat1, mat2)
if not skip_checks:
check_device(f_name, mat1, input.device)
check_device(f_name, mat2, input.device)
if beta != 0.0 and input.dtype is torch.bool:
check(
False,
f"{f_name}(): having beta == {beta} not equal to 0.0 with boolean mask is not allowed."
)
if input.dtype is not torch.bool:
check_dtype(f_name, mat1, input.dtype)
check_dtype(f_name, mat2, input.dtype)
else:
check_dtype(f_name, mat1, mat2.dtype)
check_mm_compatible_shapes(f_name, mat1, mat2)
if out is not None:
check_bsr_layout(f_name, out)
check_device(f_name, out, mat1.device)
check_dtype(f_name, out, input.dtype)
check(
out.shape == input_broadcasted.shape
and out._nnz() == input._nnz(),
f"{f_name}(): Expects `out` to be of shape {input_broadcasted.shape} "
f"and with nnz equal to {input_broadcasted._nnz()} "
f"but got out.shape = {out.shape} and out.nnz = {out._nnz()}"
)
if out is None:
out = input_broadcasted.to(mat1.dtype, copy=True)
else:
out.copy_(input_broadcasted)
if out.numel() == 0 or out._nnz() == 0:
return out
blocksize = out.values().shape[-2:]
m = mat1.size(-2)
n = mat2.size(-1)
k = mat1.size(-1)
# NOTE: (m, 0) @ (0, n) == zeros(m, n)
if alpha == 0.0 or k == 0:
out.values().mul_(beta)
return out
# prepare inputs by reshaping them to be kernel-compatible
out_backup = out
crow_indices, col_indices, values, mat1, mat2 = prepare_inputs(out, mat1, mat2)
mat1 = tile_to_blocksize(mat1, (blocksize[0], k))
mat2 = tile_to_blocksize(mat2, (k, blocksize[1]))
tile_k = max(*blocksize)
_run_sampled_addmm_kernel(
alpha, beta, beta == 0.0,
blocksize, k, tile_k,
values, crow_indices, col_indices,
mat1, mat2,
max_grid
)
# If nnz x block strides are not the same in out_backup.values and values,
# it means that out_backup.values and values are not the views of each other,
# so we have to copy.
if out_backup.values().stride()[-3:] != values.stride()[-3:]:
out_backup.values().copy_(values.reshape(out_backup.values().shape))
return out_backup
def bsr_dense_mm(
bsr: torch.Tensor,
dense: torch.Tensor,
*,
out: Optional[torch.Tensor] = None,
skip_checks: bool = False,
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
):
f_name = "bsr_dense_mm"
if not skip_checks:
check_bsr_layout(f_name, bsr)
check_device(f_name, bsr, dense.device)
check_dtype(f_name, bsr, dense.dtype)
check_mm_compatible_shapes(f_name, bsr, dense)
m = bsr.size(-2)
n = dense.size(-1)
row_block, col_block = bsr.values().shape[-2:]
check(
not n % row_block,
f"bsr_dense_mm(): dense.size(-1) == {n} should be divisible by "
f"blocksize[0] == {row_block}.",
)
check_blocksize(f_name, (row_block, col_block))
else:
m, kl = bsr.shape[-2:]
kr, n = dense.shape[-2:]
original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)
if out is not None and not skip_checks:
expected_out_shape = original_batch_dims_broadcasted + (m, n)
check(
out.shape == expected_out_shape,
"bsr_dense_mm(): `out` argument has wrong shape, "
f"expected {expected_out_shape}, but got {out.shape}.",
)
check(
out.is_contiguous() or out.transpose(-2, -1).is_contiguous(),
"bsr_dense_mm(): only row-major/col-major `out` arguments are supported, "
"i.e. (out.is_contiguous() or out.transpose(-2, -1).is_contiguous()) "
"should be True.",
)
# Allocate out
if out is None:
out = dense.new_empty(original_batch_dims_broadcasted + (m, n))
# Short circuit if lhs is zero
if bsr._nnz() == 0:
return out.zero_()
blocksize = bsr.values().shape[-2:]
# NOTE: out is contiguous, so prepare_inputs will create a view.
# out gets modified in-place, so we store a backup copy.
out_backup = out
# prepare inputs by reshaping them to be kernel-compatible.
crow_indices, col_indices, values, dense, out = prepare_inputs(bsr, dense, out)
# "Blockify" the row dimension of dense with blocksize[1]
# since dense is on the rhs of matmul
dense = tile_to_blocksize(dense, blocksize[::-1])
# "Blockify" the row dimension of out with blocksize[0]
# which is inherited from the bsr input.
# NOTE: tile_to_blocksize will create a view.
# NOTE: out.blocksize[-1] == dense.blocksize[-1],
# so it could be any value in [1, dense.shape[-1]).
# We need to probably use the largest possible blocksize
# so that it fits into SRAM.
out = tile_to_blocksize(out, (blocksize[0], blocksize[0]))
# Launch kernel
_run_dense_rowspace_kernel(blocksize, values, crow_indices, col_indices, dense, out, max_grid)
return out_backup
@triton.jit
def _bsr_softmax_kernel(
crow_indices_ptr,
crow_indices_batch_stride,
crow_indices_stride,
values_ptr,
values_batch_stride,
values_row_block_stride,
values_nnz_col_block_stride,
row_block, col_block,
MAX_ROW_NNZ: tl.constexpr,
TILE: tl.constexpr
):
batch_pid = tl.program_id(axis=2)
row_block_offset_pid = tl.program_id(axis=1)
row_block_pid = tl.program_id(axis=0)
crow_indices_offset_ptr = (
crow_indices_ptr
+ crow_indices_batch_stride * batch_pid
+ crow_indices_stride * row_block_pid
)
nnz_offset = tl.load(crow_indices_offset_ptr)
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
# Compute nnz for the row with number row_block_pid.
# If it is zero, skip the row.
row_nnz = nnz_offset_next - nnz_offset
if row_nnz == 0:
return
row_arange = tl.arange(0, TILE)
mask = row_arange < row_nnz * col_block
curr_row_values_ptrs = (
values_ptr
+ values_batch_stride * batch_pid
+ values_row_block_stride * row_block_offset_pid
+ nnz_offset * col_block
)
# find max in the row
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
max_row_value = tl.max(row_tile, axis=0)
for _ in range(TILE, MAX_ROW_NNZ, TILE):
row_arange += TILE
mask = row_arange < row_nnz * col_block
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
curr_max_row_value = tl.max(row_tile, axis=0)
max_row_value = tl.where(max_row_value > curr_max_row_value, max_row_value, curr_max_row_value)
# find denominator for stable softmax
num = tl.exp(row_tile - max_row_value)
denom = tl.sum(num, axis=0)
for _ in range(TILE, MAX_ROW_NNZ, TILE):
row_arange -= TILE
mask = row_arange < row_nnz * col_block
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
num = tl.exp(row_tile - max_row_value)
denom += tl.sum(num, axis=0)
# populate output
tl.store(curr_row_values_ptrs + row_arange, (num / denom).to(values_ptr.dtype.element_ty), mask=mask)
for _ in range(TILE, MAX_ROW_NNZ, TILE):
row_arange += TILE
mask = row_arange < row_nnz * col_block
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
num = tl.exp(row_tile - max_row_value)
tl.store(curr_row_values_ptrs + row_arange, (num / denom).to(values_ptr.dtype.element_ty), mask=mask)
def bsr_softmax(input, max_row_nnz=None):
f_name = "bsr_softmax"
check_bsr_layout(f_name, input)
check_dtype(f_name, input, input.dtype)
if input._nnz() == 0 or input.numel() == 0:
return input.clone()
m, n = input.shape[-2:]
nnz = input._nnz()
row_block, col_block = input.values().shape[-2:]
if max_row_nnz is None:
max_row_nnz = triton.next_power_of_2(n)
else:
max_row_nnz = triton.next_power_of_2(max_row_nnz)
crow_indices = input.crow_indices().unsqueeze(0).flatten(0, -2)
# reshape values from
# (b1, ..., bn, nnz, row_block, col_block) to
# (b1 * ... * bn, row_block, nnz * col_block).
# This simplifies batch dim manipulation and unlocks
# the possibility to access all nnzs in any given row.
if input.values().transpose(-3, -2).is_contiguous():
# Need to clone to avoid `contiguous` returning a view.
values = input.values().clone()
else:
values = input.values()
values = values.transpose(-3, -2).contiguous().unsqueeze(0).flatten(0, -4).reshape(-1, row_block, nnz * col_block)
full_grid = (values.shape[0], row_block, m // row_block)
grid_blocks = None
tensor_dims_map = {
# We span nnz number of blocks, not nnz + 1,
# hence crow_indices[..., :-1]
crow_indices[..., :-1]: (0, None, -1),
values: (0, None, None),
}
def kernel(grid, *sliced_tensors):
_bsr_softmax_kernel[grid](
*ptr_stride_extractor(*sliced_tensors),
row_block, col_block,
max_row_nnz,
# Triton's max numel is bounded by 2 ** 17.
min(2 ** 17, max_row_nnz)
)
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
values = values.reshape(-1, row_block, nnz, col_block).transpose(-3, -2).reshape(*input.values().shape)
return torch.sparse_compressed_tensor(
input.crow_indices().clone(),
input.col_indices().clone(),
values,
size=input.shape,
layout=input.layout
)
def _scaled_dot_product_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor],
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None
):
f_name = "_scaled_dot_product_attention"
check(
not is_causal,
f"{f_name}(): is_causal == True is not supported."
)
check(
attn_mask is not None,
f"{f_name}(): attn_mask == None is not supported."
)
assert attn_mask is not None
check(
attn_mask.layout == torch.sparse_bsr,
f"{f_name}(): "
f"attn_mask.layout must be {torch.sparse_bsr}, but got "
f"attn_mask.layout == {attn_mask.layout}."
)
check_device(f_name, key, query.device)
check_device(f_name, value, query.device)
check_device(f_name, attn_mask, query.device)
check_dtype(f_name, key, query.dtype)
check_dtype(f_name, value, query.dtype)
if attn_mask.dtype is not torch.bool:
check_dtype(f_name, attn_mask, query.dtype)
sdpa = sampled_addmm(attn_mask, query, key.transpose(-2, -1), beta=0.0, skip_checks=False)
if scale is None and query.size(-1) == 0 or scale == 0.0:
check(
False,
f"{f_name}(): current value of scale == {scale} "
"results in division by zero."
)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
sdpa.values().mul_(scale_factor)
sdpa = bsr_softmax(sdpa)
torch.nn.functional.dropout(sdpa.values(), p=dropout_p, inplace=True)
sdpa = bsr_dense_mm(sdpa, value)
return sdpa
else:
bsr_softmax = None # type: ignore[assignment]
bsr_dense_mm = None # type: ignore[assignment]
sampled_addmm = None # type: ignore[assignment]
_scaled_dot_product_attention = None # type: ignore[assignment]