| // @lint-ignore-every CLANGTIDY HOWTOEVEN |
| // AUTO-GENERATED FROM: torchgen/static_runtime/gen_static_runtime_ops.py |
| #include <gtest/gtest.h> |
| #include <torch/csrc/jit/runtime/static/impl.h> |
| #include <torch/torch.h> |
| |
| #include "test_utils.h" |
| |
| using namespace caffe2; |
| using namespace torch; |
| using namespace torch::jit; |
| using namespace torch::jit::test; |
| using c10::IValue; |
| |
| TEST(StaticRuntime, autogen_absolute) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::absolute(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_angle) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::angle(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sgn) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sgn(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_acos) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::acos(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arccos) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arccos(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__add_relu_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_add_relu(%self, %other, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, other0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, other1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addmv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mat: Tensor, %vec: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addmv(%self, %mat, %vec, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto mat0 = at::rand({2, 2}); |
| auto vec0 = at::rand({2}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, mat0, vec0, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({35}); |
| auto mat1 = at::rand({35, 35}); |
| auto vec1 = at::rand({35}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, mat1, vec1, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %vec1: Tensor, %vec2: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addr(%self, %vec1, %vec2, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6}); |
| auto vec10 = at::rand({6}); |
| auto vec20 = at::rand({6}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, vec10, vec20, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22}); |
| auto vec11 = at::rand({22}); |
| auto vec21 = at::rand({22}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, vec11, vec21, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_argmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int?, %keepdim: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::argmax(%self, %dim, %keepdim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| std::vector<IValue> args{self0, dim0, keepdim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| std::vector<IValue> args2{self1, dim1, keepdim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_acosh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::acosh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2, 2, 2}) + at::ones({2, 2, 2}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({5, 5, 5}) + at::ones({5, 5, 5}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_asinh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::asinh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arcsinh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arcsinh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atanh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atanh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arctanh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arctanh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_asin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::asin(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arcsin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arcsin(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atan) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atan(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arctan) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arctan(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_baddbmm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %batch1: Tensor, %batch2: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::baddbmm(%self, %batch1, %batch2, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto batch10 = at::rand({6, 6, 6}); |
| auto batch20 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, batch10, batch20, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto batch11 = at::rand({22, 22, 22}); |
| auto batch21 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, batch11, batch21, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_not) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_not(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_copysign_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::copysign(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logical_not) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logical_not(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logical_xor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logical_xor(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logical_and) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logical_and(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logical_or) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logical_or(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ceil) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ceil(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_clamp_max) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %max: int): |
| %bias: None = prim::Constant() |
| %ret = aten::clamp_max(%self, %max) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto max0 = 2; |
| std::vector<IValue> args{self0, max0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto max1 = 2; |
| std::vector<IValue> args2{self1, max1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_clamp_max_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %max: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::clamp_max(%self, %max) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto max0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, max0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto max1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, max1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_clip) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %min: int?, %max: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::clip(%self, %min, %max) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto min0 = 2; |
| auto max0 = 2; |
| std::vector<IValue> args{self0, min0, max0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto min1 = 2; |
| auto max1 = 2; |
| std::vector<IValue> args2{self1, min1, max1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_complex) { |
| const std::string script = R"IR( |
| graph(%real: Tensor, %imag: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::complex(%real, %imag) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto real0 = at::rand({6, 6, 6}); |
| auto imag0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{real0, imag0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto real1 = at::rand({22, 22, 22}); |
| auto imag1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{real1, imag1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_polar) { |
| const std::string script = R"IR( |
| graph(%abs: Tensor, %angle: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::polar(%abs, %angle) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto abs0 = at::rand({6, 6, 6}); |
| auto angle0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{abs0, angle0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto abs1 = at::rand({22, 22, 22}); |
| auto angle1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{abs1, angle1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cos) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::cos(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cosh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::cosh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cumprod) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %dtype: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::cumprod(%self, %dim, %dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{self0, dim0, dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{self1, dim1, dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_diff) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int, %dim: int, %prepend: Tensor?, %append: Tensor?): |
| %bias: None = prim::Constant() |
| %ret = aten::diff(%self, %n, %dim, %prepend, %append) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto prepend0 = at::rand({6, 6, 6}); |
| auto append0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, n0, dim0, prepend0, append0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto prepend1 = at::rand({22, 22, 22}); |
| auto append1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, n1, dim1, prepend1, append1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_divide_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::divide(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_true_divide_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::true_divide(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_dot) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %tensor: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::dot(%self, %tensor) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({16}); |
| auto tensor0 = at::rand({16}); |
| std::vector<IValue> args{self0, tensor0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({64}); |
| auto tensor1 = at::rand({64}); |
| std::vector<IValue> args2{self1, tensor1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_vdot) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::vdot(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({16}); |
| auto other0 = at::rand({16}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({64}); |
| auto other1 = at::rand({64}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_erf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_erfc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erfc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_exp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::exp(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_exp2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::exp2(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_expm1) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::expm1(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_floor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::floor(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_frac) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::frac(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gcd) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::gcd(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lcm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lcm(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_index_copy) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::index_copy(%self, %dim, %index, %source) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto dim0 = 0; |
| auto index0 = at::randint(0, 1, {2}, at::kLong); |
| auto source0 = at::rand({2}); |
| std::vector<IValue> args{self0, dim0, index0, source0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32}); |
| auto dim1 = 0; |
| auto index1 = at::randint(0, 10, {32}, at::kLong); |
| auto source1 = at::rand({32}); |
| std::vector<IValue> args2{self1, dim1, index1, source1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Tensor_Tensor) { |
| const std::string script = R"IR( |
| graph(%elements: Tensor, %test_elements: Tensor, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%elements, %test_elements, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto elements0 = at::rand({6, 6, 6}); |
| auto test_elements0 = at::rand({6, 6, 6}); |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{elements0, test_elements0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto elements1 = at::rand({22, 22, 22}); |
| auto test_elements1 = at::rand({22, 22, 22}); |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{elements1, test_elements1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Tensor_Scalar) { |
| const std::string script = R"IR( |
| graph(%elements: Tensor, %test_element: int, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%elements, %test_element, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto elements0 = at::rand({6, 6, 6}); |
| auto test_element0 = 2; |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{elements0, test_element0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto elements1 = at::rand({22, 22, 22}); |
| auto test_element1 = 2; |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{elements1, test_element1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Scalar_Tensor) { |
| const std::string script = R"IR( |
| graph(%element: int, %test_elements: Tensor, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%element, %test_elements, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto element0 = 2; |
| auto test_elements0 = at::rand({6, 6, 6}); |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{element0, test_elements0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto element1 = 2; |
| auto test_elements1 = at::rand({22, 22, 22}); |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{element1, test_elements1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_kron) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::kron(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ldexp_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ldexp(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log10) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log10(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log1p) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log1p(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log2(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logaddexp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logaddexp(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logaddexp2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logaddexp2(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_xlogy_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::xlogy(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__log_softmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %half_to_float: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_log_softmax(%self, %dim, %half_to_float) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto half_to_float0 = false; |
| std::vector<IValue> args{self0, dim0, half_to_float0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto half_to_float1 = false; |
| std::vector<IValue> args2{self1, dim1, half_to_float1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__log_softmax_backward_data) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_log_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto input_dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{grad_output0, output0, dim0, input_dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto input_dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{grad_output1, output1, dim1, input_dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__logcumsumexp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_logcumsumexp(%self, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logcumsumexp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::logcumsumexp(%self, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_matrix_power) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int): |
| %bias: None = prim::Constant() |
| %ret = aten::matrix_power(%self, %n) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| std::vector<IValue> args{self0, n0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| std::vector<IValue> args2{self1, n1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mat2: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mm(%self, %mat2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| auto mat20 = at::rand({8, 8}); |
| std::vector<IValue> args{self0, mat20}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32, 32}); |
| auto mat21 = at::rand({32, 32}); |
| std::vector<IValue> args2{self1, mat21}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_multiply_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::multiply(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %vec: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mv(%self, %vec) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6}); |
| auto vec0 = at::rand({6}); |
| std::vector<IValue> args{self0, vec0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22}); |
| auto vec1 = at::rand({22}); |
| std::vector<IValue> args2{self1, vec1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mvlgamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %p: int): |
| %bias: None = prim::Constant() |
| %ret = aten::mvlgamma(%self, %p) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto p0 = 1; |
| std::vector<IValue> args{self0, p0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto p1 = 1; |
| std::vector<IValue> args2{self1, p1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_rad2deg) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::rad2deg(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_deg2rad) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::deg2rad(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_reciprocal) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::reciprocal(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_neg) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::neg(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_negative) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::negative(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_round) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::round(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_round_decimals) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %decimals: int): |
| %bias: None = prim::Constant() |
| %ret = aten::round(%self, %decimals) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto decimals0 = 1; |
| std::vector<IValue> args{self0, decimals0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto decimals1 = 1; |
| std::vector<IValue> args2{self1, decimals1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gelu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %approximate: str): |
| %bias: None = prim::Constant() |
| %ret = aten::gelu(%self, %approximate) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto approximate0 = "tanh"; |
| std::vector<IValue> args{self0, approximate0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto approximate1 = "tanh"; |
| std::vector<IValue> args2{self1, approximate1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gelu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %approximate: str): |
| %bias: None = prim::Constant() |
| %ret = aten::gelu_backward(%grad_output, %self, %approximate) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto approximate0 = "tanh"; |
| std::vector<IValue> args{grad_output0, self0, approximate0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto approximate1 = "tanh"; |
| std::vector<IValue> args2{grad_output1, self1, approximate1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardshrink) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::hardshrink(%self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardshrink_backward) { |
| const std::string script = R"IR( |
| graph(%grad_out: Tensor, %self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::hardshrink_backward(%grad_out, %self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_out0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{grad_out0, self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_out1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{grad_out1, self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_rsqrt) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::rsqrt(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_silu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::silu(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_silu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::silu_backward(%grad_output, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mish) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mish(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sin(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sinc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sinc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sinh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sinh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__softmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %half_to_float: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_softmax(%self, %dim, %half_to_float) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto half_to_float0 = false; |
| std::vector<IValue> args{self0, dim0, half_to_float0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto half_to_float1 = false; |
| std::vector<IValue> args2{self1, dim1, half_to_float1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__softmax_backward_data) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto input_dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{grad_output0, output0, dim0, input_dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto input_dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{grad_output1, output1, dim1, input_dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sqrt) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sqrt(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_square) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::square(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_prod) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dtype: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::prod(%self, %dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{self0, dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{self1, dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_prod_dim_int) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %keepdim: bool, %dtype: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::prod(%self, %dim, %keepdim, %dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| auto dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{self0, dim0, keepdim0, dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| auto dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{self1, dim1, keepdim1, dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tan) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::tan(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_threshold) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %threshold: int, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::threshold(%self, %threshold, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto threshold0 = 2; |
| auto value0 = 2; |
| std::vector<IValue> args{self0, threshold0, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto threshold1 = 2; |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, threshold1, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_threshold_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::threshold_backward(%grad_output, %self, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto threshold0 = 2; |
| std::vector<IValue> args{grad_output0, self0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto threshold1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_trunc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::trunc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fix) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::fix(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_nuclear_norm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %keepdim: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::nuclear_norm(%self, %keepdim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| auto keepdim0 = false; |
| std::vector<IValue> args{self0, keepdim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({32, 32}); |
| auto keepdim1 = false; |
| std::vector<IValue> args2{self1, keepdim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_subtract_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::subtract(%self, %other, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, other0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, other1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_heaviside) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %values: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::heaviside(%self, %values) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto values0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, values0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto values1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, values1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__addmm_activation) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mat1: Tensor, %mat2: Tensor, %beta: int, %alpha: int, %use_gelu: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_addmm_activation(%self, %mat1, %mat2, %beta, %alpha, %use_gelu) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| auto mat10 = at::rand({8, 8}); |
| auto mat20 = at::rand({8, 8}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| auto use_gelu0 = false; |
| std::vector<IValue> args{self0, mat10, mat20, beta0, alpha0, use_gelu0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32, 32}); |
| auto mat11 = at::rand({32, 32}); |
| auto mat21 = at::rand({32, 32}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| auto use_gelu1 = false; |
| std::vector<IValue> args2{self1, mat11, mat21, beta1, alpha1, use_gelu1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_index_add) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::index_add(%self, %dim, %index, %source, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto dim0 = 0; |
| auto index0 = at::randint(0, 1, {2}, at::kInt); |
| auto source0 = at::rand({2}); |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, dim0, index0, source0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({16}); |
| auto dim1 = 0; |
| auto index1 = at::randint(0, 10, {16}, at::kInt); |
| auto source1 = at::rand({16}); |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, dim1, index1, source1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_src) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %src) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, src0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, src1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_value) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto value0 = 2; |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto value1 = 2; |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_reduce) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor, %reduce: str): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %src, %reduce) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto reduce0 = "add"; |
| std::vector<IValue> args{self0, dim0, index0, src0, reduce0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto reduce1 = "add"; |
| std::vector<IValue> args2{self1, dim1, index1, src1, reduce1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_value_reduce) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %value: int, %reduce: str): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %value, %reduce) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto value0 = 2; |
| auto reduce0 = "add"; |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, value0, reduce0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto value1 = 2; |
| auto reduce1 = "add"; |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, value1, reduce1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_add) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter_add(%self, %dim, %index, %src) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, src0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, src1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_reduce_two) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor, %reduce: str, %include_self: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter_reduce(%self, %dim, %index, %src, %reduce, %include_self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto index0 = at::randint(6, {6, 6, 6}, torch::kInt64); |
| auto src0 = at::rand({6, 6, 6}); |
| auto reduce0 = "mean"; |
| auto include_self0 = false; |
| std::vector<IValue> args{self0, dim0, index0, src0, reduce0, include_self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto index1 = at::randint(22, {22, 22, 22}, torch::kInt64); |
| auto src1 = at::rand({22, 22, 22}); |
| auto reduce1 = "mean"; |
| auto include_self1 = false; |
| std::vector<IValue> args2{self1, dim1, index1, src1, reduce1, include_self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_eq_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::eq(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_eq_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::eq(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_and_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_and(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_or_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_or(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_xor_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_xor(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_left_shift_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_left_shift(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 1 << 4, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 26, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 1 << 4, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 26, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_right_shift_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_right_shift(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1 << 21, 1 << 30, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 22, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1 << 21, 1 << 30, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 22, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tril) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %diagonal: int): |
| %bias: None = prim::Constant() |
| %ret = aten::tril(%self, %diagonal) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto diagonal0 = 1; |
| std::vector<IValue> args{self0, diagonal0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto diagonal1 = 1; |
| std::vector<IValue> args2{self1, diagonal1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_triu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %diagonal: int): |
| %bias: None = prim::Constant() |
| %ret = aten::triu(%self, %diagonal) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto diagonal0 = 1; |
| std::vector<IValue> args{self0, diagonal0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto diagonal1 = 1; |
| std::vector<IValue> args2{self1, diagonal1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_digamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::digamma(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lerp_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %end: Tensor, %weight: int): |
| %bias: None = prim::Constant() |
| %ret = aten::lerp(%self, %end, %weight) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto end0 = at::rand({6, 6, 6}); |
| auto weight0 = 2; |
| std::vector<IValue> args{self0, end0, weight0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto end1 = at::rand({22, 22, 22}); |
| auto weight1 = 2; |
| std::vector<IValue> args2{self1, end1, weight1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lerp_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %end: Tensor, %weight: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lerp(%self, %end, %weight) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto end0 = at::rand({6, 6, 6}); |
| auto weight0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, end0, weight0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto end1 = at::rand({22, 22, 22}); |
| auto weight1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, end1, weight1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addbmm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %batch1: Tensor, %batch2: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addbmm(%self, %batch1, %batch2, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6}); |
| auto batch10 = at::rand({6, 6, 6}); |
| auto batch20 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, batch10, batch20, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22}); |
| auto batch11 = at::rand({22, 22, 22}); |
| auto batch21 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, batch11, batch21, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_diag) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %diagonal: int): |
| %bias: None = prim::Constant() |
| %ret = aten::diag(%self, %diagonal) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| auto diagonal0 = 1; |
| std::vector<IValue> args{self0, diagonal0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32, 32}); |
| auto diagonal1 = 1; |
| std::vector<IValue> args2{self1, diagonal1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cross) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor, %dim: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::cross(%self, %other, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({3, 3, 3}); |
| auto other0 = at::rand({3, 3, 3}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, other0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 3, 22}); |
| auto other1 = at::rand({22, 3, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, other1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ne_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::ne(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ne_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ne(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ge_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::ge(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ge_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ge(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_le_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::le(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_le_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::le(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gt_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::gt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gt_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::gt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lt_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::lt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lt_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_take) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %index: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::take(%self, %index) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto index0 = at::randint(0, 216, {20}, torch::kInt64); |
| std::vector<IValue> args{self0, index0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto index1 = at::randint(0, 1000, {100}, torch::kInt64); |
| std::vector<IValue> args2{self1, index1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_take_along_dim) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %indices: Tensor, %dim: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::take_along_dim(%self, %indices, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto indices0 = at::argsort(self0, 1, true); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, indices0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto indices1 = at::argsort(self1, 1, true); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, indices1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_masked_select) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mask: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::masked_select(%self, %mask) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto mask0 = at::randn({6, 6, 6}) > 0.5; |
| std::vector<IValue> args{self0, mask0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto mask1 = at::rand({22, 22, 22}) > 0.5; |
| std::vector<IValue> args2{self1, mask1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gather) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %sparse_grad: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::gather(%self, %dim, %index, %sparse_grad) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, at::kInt); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto sparse_grad0 = false; |
| std::vector<IValue> args{self0, dim0, index0, sparse_grad0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, at::kInt); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 4, {5, 5, 5}, torch::kInt64); |
| auto sparse_grad1 = false; |
| std::vector<IValue> args2{self1, dim1, index1, sparse_grad1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addcmul) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addcmul(%self, %tensor1, %tensor2, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto tensor10 = at::rand({6, 6, 6}); |
| auto tensor20 = at::rand({6, 6, 6}); |
| auto value0 = 2; |
| std::vector<IValue> args{self0, tensor10, tensor20, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto tensor11 = at::rand({22, 22, 22}); |
| auto tensor21 = at::rand({22, 22, 22}); |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, tensor11, tensor21, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addcdiv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addcdiv(%self, %tensor1, %tensor2, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto tensor10 = at::rand({6, 6, 6}); |
| auto tensor20 = at::rand({6, 6, 6}); |
| auto value0 = 2; |
| std::vector<IValue> args{self0, tensor10, tensor20, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto tensor11 = at::rand({22, 22, 22}); |
| auto tensor21 = at::rand({22, 22, 22}); |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, tensor11, tensor21, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_solve_triangular) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %B: Tensor, %upper: bool, %left: bool, %unitriangular: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_solve_triangular(%self, %B, %upper, %left, %unitriangular) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto B0 = at::rand({6, 6, 6}); |
| auto upper0 = false; |
| auto left0 = false; |
| auto unitriangular0 = false; |
| std::vector<IValue> args{self0, B0, upper0, left0, unitriangular0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto B1 = at::rand({22, 22, 22}); |
| auto upper1 = false; |
| auto left1 = false; |
| auto unitriangular1 = false; |
| std::vector<IValue> args2{self1, B1, upper1, left1, unitriangular1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cholesky_solve) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %input2: Tensor, %upper: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::cholesky_solve(%self, %input2, %upper) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto input20 = at::rand({6, 6, 6}); |
| auto upper0 = false; |
| std::vector<IValue> args{self0, input20, upper0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto input21 = at::rand({22, 22, 22}); |
| auto upper1 = false; |
| std::vector<IValue> args2{self1, input21, upper1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cholesky_inverse) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %upper: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::cholesky_inverse(%self, %upper) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto upper0 = false; |
| std::vector<IValue> args{self0, upper0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto upper1 = false; |
| std::vector<IValue> args2{self1, upper1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_orgqr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %input2: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::orgqr(%self, %input2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto input20 = at::rand({6, 6}); |
| std::vector<IValue> args{self0, input20}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto input21 = at::rand({22, 22}); |
| std::vector<IValue> args2{self1, input21}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ormqr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %input2: Tensor, %input3: Tensor, %left: bool, %transpose: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::ormqr(%self, %input2, %input3, %left, %transpose) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto input20 = at::rand({6, 6}); |
| auto input30 = at::rand({6, 6, 6}); |
| auto left0 = false; |
| auto transpose0 = false; |
| std::vector<IValue> args{self0, input20, input30, left0, transpose0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto input21 = at::rand({22, 22}); |
| auto input31 = at::rand({22, 22, 22}); |
| auto left1 = false; |
| auto transpose1 = false; |
| std::vector<IValue> args2{self1, input21, input31, left1, transpose1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lgamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lgamma(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_polygamma) { |
| const std::string script = R"IR( |
| graph(%n: int, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::polygamma(%n, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto n0 = 1; |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{n0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto n1 = 1; |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{n1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_erfinv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erfinv(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_i0) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::i0(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_signbit) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::signbit(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atan2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atan2(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_arctan2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::arctan2(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_histc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %bins: int, %min: int, %max: int): |
| %bias: None = prim::Constant() |
| %ret = aten::histc(%self, %bins, %min, %max) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto bins0 = 1; |
| auto min0 = 2; |
| auto max0 = 2; |
| std::vector<IValue> args{self0, bins0, min0, max0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto bins1 = 1; |
| auto min1 = 2; |
| auto max1 = 2; |
| std::vector<IValue> args2{self1, bins1, min1, max1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_hypot) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hypot(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_igamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::igamma(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_igammac) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::igammac(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_nextafter) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::nextafter(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fmin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::fmin(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::fmax(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_maximum) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::maximum(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_minimum) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::minimum(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_min_other) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::min(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_quantile) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %q: Tensor, %dim: int?, %keepdim: bool, %interpolation: str): |
| %bias: None = prim::Constant() |
| %ret = aten::quantile(%self, %q, %dim, %keepdim, %interpolation) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto q0 = at::rand({6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| auto interpolation0 = "linear"; |
| std::vector<IValue> args{self0, q0, dim0, keepdim0, interpolation0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto q1 = at::rand({22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| auto interpolation1 = "linear"; |
| std::vector<IValue> args2{self1, q1, dim1, keepdim1, interpolation1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_nanquantile) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %q: Tensor, %dim: int?, %keepdim: bool, %interpolation: str): |
| %bias: None = prim::Constant() |
| %ret = aten::nanquantile(%self, %q, %dim, %keepdim, %interpolation) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto q0 = at::rand({6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| auto interpolation0 = "linear"; |
| std::vector<IValue> args{self0, q0, dim0, keepdim0, interpolation0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto q1 = at::rand({22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| auto interpolation1 = "linear"; |
| std::vector<IValue> args2{self1, q1, dim1, keepdim1, interpolation1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_msort) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::msort(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_renorm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %p: int, %dim: int, %maxnorm: int): |
| %bias: None = prim::Constant() |
| %ret = aten::renorm(%self, %p, %dim, %maxnorm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto p0 = 2; |
| auto dim0 = 1; |
| auto maxnorm0 = 2; |
| std::vector<IValue> args{self0, p0, dim0, maxnorm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto p1 = 2; |
| auto dim1 = 1; |
| auto maxnorm1 = 2; |
| std::vector<IValue> args2{self1, p1, dim1, maxnorm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__convert_indices_from_coo_to_csr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %size: int, %out_int32: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_convert_indices_from_coo_to_csr(%self, %size, %out_int32) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(0, 3, {2}, at::kInt); |
| auto size0 = 10; |
| auto out_int320 = false; |
| std::vector<IValue> args{self0, size0, out_int320}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(0, 3, {12}, at::kInt); |
| auto size1 = 24; |
| auto out_int321 = false; |
| std::vector<IValue> args2{self1, size1, out_int321}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__convert_indices_from_csr_to_coo) { |
| const std::string script = R"IR( |
| graph(%crow_indices: Tensor, %col_indices: Tensor, %out_int32: bool, %transpose: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_convert_indices_from_csr_to_coo(%crow_indices, %col_indices, %out_int32, %transpose) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto crow_indices0 = torch::tensor({1}, torch::kInt32); |
| auto col_indices0 = torch::tensor({0, 1, 0}, torch::kInt32); |
| auto out_int320 = false; |
| auto transpose0 = false; |
| std::vector<IValue> args{crow_indices0, col_indices0, out_int320, transpose0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto crow_indices1 = torch::tensor({0}, torch::kInt32); |
| auto col_indices1 = |
| torch::tensor({0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2}, torch::kInt32); |
| auto out_int321 = false; |
| auto transpose1 = false; |
| std::vector<IValue> args2{ |
| crow_indices1, col_indices1, out_int321, transpose1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mse_loss) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %target: Tensor, %reduction: int): |
| %bias: None = prim::Constant() |
| %ret = aten::mse_loss(%self, %target, %reduction) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto target0 = at::rand({6, 6, 6}); |
| auto reduction0 = 1; |
| std::vector<IValue> args{self0, target0, reduction0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto target1 = at::rand({22, 22, 22}); |
| auto reduction1 = 1; |
| std::vector<IValue> args2{self1, target1, reduction1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_multi_margin_loss) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %target: Tensor, %p: int, %margin: int, %weight: Tensor?, %reduction: int): |
| %bias: None = prim::Constant() |
| %ret = aten::multi_margin_loss(%self, %target, %p, %margin, %weight, %reduction) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6}); |
| auto target0 = at::randint(6, {6}, torch::kInt64); |
| auto p0 = 2; |
| auto margin0 = 2; |
| auto weight0 = at::rand({6}); |
| auto reduction0 = 1; |
| std::vector<IValue> args{self0, target0, p0, margin0, weight0, reduction0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({22, 22}); |
| auto target1 = at::randint(22, {22}, torch::kInt64); |
| auto p1 = 2; |
| auto margin1 = 2; |
| auto weight1 = at::rand({22}); |
| auto reduction1 = 1; |
| std::vector<IValue> args2{self1, target1, p1, margin1, weight1, reduction1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_multilabel_margin_loss) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %target: Tensor, %reduction: int): |
| %bias: None = prim::Constant() |
| %ret = aten::multilabel_margin_loss(%self, %target, %reduction) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6}); |
| auto target0 = at::randint(6, {6, 6}, torch::kInt64); |
| auto reduction0 = 1; |
| std::vector<IValue> args{self0, target0, reduction0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({22, 22}); |
| auto target1 = at::randint(22, {22, 22}, torch::kInt64); |
| auto reduction1 = 1; |
| std::vector<IValue> args2{self1, target1, reduction1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_soft_margin_loss) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %target: Tensor, %reduction: int): |
| %bias: None = prim::Constant() |
| %ret = aten::soft_margin_loss(%self, %target, %reduction) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto target0 = at::rand({6, 6, 6}); |
| auto reduction0 = 1; |
| std::vector<IValue> args{self0, target0, reduction0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto target1 = at::rand({22, 22, 22}); |
| auto reduction1 = 1; |
| std::vector<IValue> args2{self1, target1, reduction1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_elu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %alpha: int, %scale: int, %input_scale: int): |
| %bias: None = prim::Constant() |
| %ret = aten::elu(%self, %alpha, %scale, %input_scale) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| auto scale0 = 2; |
| auto input_scale0 = 2; |
| std::vector<IValue> args{self0, alpha0, scale0, input_scale0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| auto scale1 = 2; |
| auto input_scale1 = 2; |
| std::vector<IValue> args2{self1, alpha1, scale1, input_scale1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_elu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %alpha: int, %scale: int, %input_scale: int, %is_result: bool, %self_or_result: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::elu_backward(%grad_output, %alpha, %scale, %input_scale, %is_result, %self_or_result) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| auto scale0 = 2; |
| auto input_scale0 = 2; |
| auto is_result0 = false; |
| auto self_or_result0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{ |
| grad_output0, alpha0, scale0, input_scale0, is_result0, self_or_result0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| auto scale1 = 2; |
| auto input_scale1 = 2; |
| auto is_result1 = false; |
| auto self_or_result1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{ |
| grad_output1, alpha1, scale1, input_scale1, is_result1, self_or_result1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_glu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::glu(%self, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardsigmoid) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hardsigmoid(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardsigmoid_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hardsigmoid_backward(%grad_output, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardtanh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %min_val: int, %max_val: int): |
| %bias: None = prim::Constant() |
| %ret = aten::hardtanh(%self, %min_val, %max_val) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto min_val0 = 2; |
| auto max_val0 = 2; |
| std::vector<IValue> args{self0, min_val0, max_val0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto min_val1 = 2; |
| auto max_val1 = 2; |
| std::vector<IValue> args2{self1, min_val1, max_val1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardswish) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hardswish(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_leaky_relu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %negative_slope: int, %self_is_result: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::leaky_relu_backward(%grad_output, %self, %negative_slope, %self_is_result) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto negative_slope0 = 2; |
| auto self_is_result0 = false; |
| std::vector<IValue> args{ |
| grad_output0, self0, negative_slope0, self_is_result0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto negative_slope1 = 2; |
| auto self_is_result1 = false; |
| std::vector<IValue> args2{ |
| grad_output1, self1, negative_slope1, self_is_result1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log_sigmoid) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log_sigmoid(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softplus) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %beta: int, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softplus(%self, %beta, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto threshold0 = 2; |
| std::vector<IValue> args{self0, beta0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto threshold1 = 2; |
| std::vector<IValue> args2{self1, beta1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softplus_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %beta: int, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softplus_backward(%grad_output, %self, %beta, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto threshold0 = 2; |
| std::vector<IValue> args{grad_output0, self0, beta0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto threshold1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, beta1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softshrink) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softshrink(%self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softshrink_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softshrink_backward(%grad_output, %self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{grad_output0, self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_adaptive_max_pool2d_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::adaptive_max_pool2d_backward(%grad_output, %self, %indices) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({2, 2, 2}, at::kFloat); |
| auto self0 = at::rand({2, 2, 2}, at::kFloat); |
| auto indices0 = at::randint(0, 1, {2, 2, 2}, at::kLong); |
| std::vector<IValue> args{grad_output0, self0, indices0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({3, 3, 3}, at::kFloat); |
| auto self1 = at::rand({3, 3, 3}, at::kFloat); |
| auto indices1 = at::randint(0, 1, {3, 3, 3}, at::kLong); |
| std::vector<IValue> args2{grad_output1, self1, indices1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_adaptive_max_pool3d_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::adaptive_max_pool3d_backward(%grad_output, %self, %indices) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({2, 2, 2, 2}, at::kFloat); |
| auto self0 = at::rand({2, 2, 2, 2}, at::kFloat); |
| auto indices0 = at::randint(0, 1, {2, 2, 2, 2}, at::kLong); |
| std::vector<IValue> args{grad_output0, self0, indices0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({3, 3, 3, 3}, at::kFloat); |
| auto self1 = at::rand({3, 3, 3, 3}, at::kFloat); |
| auto indices1 = at::randint(0, 1, {3, 3, 3, 3}, at::kLong); |
| std::vector<IValue> args2{grad_output1, self1, indices1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sigmoid_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sigmoid_backward(%grad_output, %output) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, output0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, output1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tanh_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::tanh_backward(%grad_output, %output) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, output0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, output1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isposinf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::isposinf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isneginf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::isneginf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_entr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_entr(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_ndtri) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_ndtri(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_log_ndtr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_log_ndtr(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_expm1) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_expm1(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_exp2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_exp2(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_psi) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_psi(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_digamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_digamma(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_gammaln) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_gammaln(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_erf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_erf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_erfc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_erfc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_erfcx) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_erfcx(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_erfinv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_erfinv(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_ndtr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_ndtr(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_xlog1py) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_xlog1py(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_xlogy) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_xlogy(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_zeta) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_zeta(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); |
| auto other0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); |
| auto other1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i0) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i0(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i0e) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i0e(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i1) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i1(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i1e) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i1e(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_polygamma) { |
| const std::string script = R"IR( |
| graph(%n: int, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_polygamma(%n, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto n0 = 1; |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{n0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto n1 = 1; |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{n1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_expit) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_expit(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_sinc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_sinc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_round) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %decimals: int): |
| %bias: None = prim::Constant() |
| %ret = aten::special_round(%self, %decimals) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto decimals0 = 1; |
| std::vector<IValue> args{self0, decimals0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto decimals1 = 1; |
| std::vector<IValue> args2{self1, decimals1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_log1p) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_log1p(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_gammainc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_gammainc(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_gammaincc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_gammaincc(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_multigammaln) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %p: int): |
| %bias: None = prim::Constant() |
| %ret = aten::special_multigammaln(%self, %p) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto p0 = 1; |
| std::vector<IValue> args{self0, p0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto p1 = 1; |
| std::vector<IValue> args2{self1, p1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_fft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_fft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_ifft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_ifft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_rfft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_rfft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_irfft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_irfft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_hfft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_hfft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fft_ihfft) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int?, %dim: int, %norm: str?): |
| %bias: None = prim::Constant() |
| %ret = aten::fft_ihfft(%self, %n, %dim, %norm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| auto dim0 = 1; |
| auto norm0 = "forward"; |
| std::vector<IValue> args{self0, n0, dim0, norm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| auto dim1 = 1; |
| auto norm1 = "forward"; |
| std::vector<IValue> args2{self1, n1, dim1, norm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_cross) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_cross(%self, %other, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 3, 6}); |
| auto other0 = at::rand({6, 3, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, other0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 3, 22}); |
| auto other1 = at::rand({22, 3, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, other1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_det) { |
| const std::string script = R"IR( |
| graph(%A: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_det(%A) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto A0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{A0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto A1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{A1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_matmul) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_matmul(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_eigvals) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_eigvals(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_inv) { |
| const std::string script = R"IR( |
| graph(%A: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_inv(%A) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto A0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{A0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto A1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{A1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_inverse) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::inverse(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_inner) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::inner(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_outer) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %vec2: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::outer(%self, %vec2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({16}); |
| auto vec20 = at::rand({16}); |
| std::vector<IValue> args{self0, vec20}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({64}); |
| auto vec21 = at::rand({64}); |
| std::vector<IValue> args2{self1, vec21}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_cond) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %p: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_cond(%self, %p) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto p0 = 2; |
| std::vector<IValue> args{self0, p0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto p1 = 2; |
| std::vector<IValue> args2{self1, p1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_solve) { |
| const std::string script = R"IR( |
| graph(%A: Tensor, %B: Tensor, %left: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_solve(%A, %B, %left) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto A0 = at::rand({6, 6, 6}); |
| auto B0 = at::rand({6, 6, 6}); |
| auto left0 = false; |
| std::vector<IValue> args{A0, B0, left0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto A1 = at::rand({22, 22, 22}); |
| auto B1 = at::rand({22, 22, 22}); |
| auto left1 = false; |
| std::vector<IValue> args2{A1, B1, left1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_tensorinv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %ind: int): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_tensorinv(%self, %ind) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6, 6}); |
| auto ind0 = 2; |
| std::vector<IValue> args{self0, ind0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22, 22}); |
| auto ind1 = 2; |
| std::vector<IValue> args2{self1, ind1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_matrix_power) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %n: int): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_matrix_power(%self, %n) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto n0 = 1; |
| std::vector<IValue> args{self0, n0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto n1 = 1; |
| std::vector<IValue> args2{self1, n1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_view_as_real) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::view_as_real(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randn({6, 6, 6}, at::kComplexFloat); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_view_as_complex) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::view_as_complex(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2, 2}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_real) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::real(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_imag) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::imag(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randn({6, 6, 6}, at::kComplexFloat); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen__conj) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::_conj(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randn({6, 6, 6}, at::kComplexFloat); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_conj) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::conj(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_resolve_conj) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::resolve_conj(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_resolve_neg) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::resolve_neg(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen__neg_view) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::_neg_view(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_diagonal) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %offset: int, %dim1: int, %dim2: int): |
| %bias: None = prim::Constant() |
| %ret = aten::diagonal(%self, %offset, %dim1, %dim2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto offset0 = 0; |
| auto dim10 = 2; |
| auto dim20 = 1; |
| std::vector<IValue> args{self0, offset0, dim10, dim20}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_diagonal) { |
| const std::string script = R"IR( |
| graph(%A: Tensor, %offset: int, %dim1: int, %dim2: int): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_diagonal(%A, %offset, %dim1, %dim2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto A0 = at::rand({6, 6, 6}); |
| auto offset0 = 0; |
| auto dim10 = 2; |
| auto dim20 = 1; |
| std::vector<IValue> args{A0, offset0, dim10, dim20}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_movedim_int) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %source: int, %destination: int): |
| %bias: None = prim::Constant() |
| %ret = aten::movedim(%self, %source, %destination) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto source0 = 1; |
| auto destination0 = 1; |
| std::vector<IValue> args{self0, source0, destination0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_moveaxis_int) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %source: int, %destination: int): |
| %bias: None = prim::Constant() |
| %ret = aten::moveaxis(%self, %source, %destination) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto source0 = 1; |
| auto destination0 = 1; |
| std::vector<IValue> args{self0, source0, destination0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_numpy_T) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::numpy_T(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_matrix_H) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::matrix_H(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_mT) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mT(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_mH) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mH(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_adjoint) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::adjoint(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_ravel) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ravel(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_t) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::t(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_unsqueeze) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::unsqueeze(%self, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, dim0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_view_as) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::view_as(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_positive) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::positive(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen__autocast_to_reduced_precision) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %cuda_enabled: bool, %cpu_enabled: bool, %cuda_dtype: int, %cpu_dtype: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_autocast_to_reduced_precision(%self, %cuda_enabled, %cpu_enabled, %cuda_dtype, %cpu_dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto cuda_enabled0 = false; |
| auto cpu_enabled0 = false; |
| auto cuda_dtype0 = at::ScalarType::Float; |
| auto cpu_dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{ |
| self0, cuda_enabled0, cpu_enabled0, cuda_dtype0, cpu_dtype0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen__autocast_to_full_precision) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %cuda_enabled: bool, %cpu_enabled: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_autocast_to_full_precision(%self, %cuda_enabled, %cpu_enabled) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto cuda_enabled0 = false; |
| auto cpu_enabled0 = false; |
| std::vector<IValue> args{self0, cuda_enabled0, cpu_enabled0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_swapaxes) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %axis0: int, %axis1: int): |
| %bias: None = prim::Constant() |
| %ret = aten::swapaxes(%self, %axis0, %axis1) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto axis00 = 1; |
| auto axis10 = 1; |
| std::vector<IValue> args{self0, axis00, axis10}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_swapdims) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim0: int, %dim1: int): |
| %bias: None = prim::Constant() |
| %ret = aten::swapdims(%self, %dim0, %dim1) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim00 = 1; |
| auto dim10 = 1; |
| std::vector<IValue> args{self0, dim00, dim10}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_unfold) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dimension: int, %size: int, %step: int): |
| %bias: None = prim::Constant() |
| %ret = aten::unfold(%self, %dimension, %size, %step) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dimension0 = 1; |
| auto size0 = 1; |
| auto step0 = 1; |
| std::vector<IValue> args{self0, dimension0, size0, step0}; |
| testStaticRuntime(script, args); |
| } |
| |
| TEST(StaticRuntime, autogen_alias) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::alias(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime(script, args); |
| } |