|  | # Owner(s): ["module: unknown"] | 
|  |  | 
|  | from functools import partial | 
|  | from textwrap import dedent | 
|  |  | 
|  | import torch | 
|  |  | 
|  | from torch.testing import FileCheck | 
|  | from torch.testing._internal.common_device_type import ( | 
|  | instantiate_device_type_tests, | 
|  | OpDTypes, | 
|  | ops, | 
|  | ) | 
|  | from torch.testing._internal.common_jit import ( | 
|  | check_against_reference, | 
|  | JitCommonTestCase, | 
|  | ) | 
|  | from torch.testing._internal.common_methods_invocations import op_db | 
|  | from torch.testing._internal.common_utils import ( | 
|  | clone_input_helper, | 
|  | first_sample, | 
|  | IS_SANDCASTLE, | 
|  | run_tests, | 
|  | TestCase, | 
|  | unMarkDynamoStrictTest, | 
|  | ) | 
|  | from torch.testing._internal.jit_metaprogramming_utils import ( | 
|  | check_alias_annotation, | 
|  | create_script_fn, | 
|  | create_traced_fn, | 
|  | ) | 
|  | from torch.testing._internal.jit_utils import ( | 
|  | disable_autodiff_subgraph_inlining, | 
|  | is_lambda, | 
|  | ) | 
|  |  | 
|  | # variant testing is only done with torch.float and torch.cfloat to avoid | 
|  | #   excessive test times and maximize signal to noise ratio | 
|  | _variant_ops = partial( | 
|  | ops, dtypes=OpDTypes.supported, allowed_dtypes=(torch.float, torch.cfloat) | 
|  | ) | 
|  |  | 
|  |  | 
|  | # Tests operators for consistency between JIT and eager, also checks | 
|  | #   correctness of JIT specific alias schemas and intended | 
|  | #   autodifferentiation behavior. | 
|  | # Inherits from JitCommonTestCase instead of TestCase directly to share | 
|  | #   functionality with original test_jit.py method operator tests | 
|  | @unMarkDynamoStrictTest | 
|  | class TestJit(JitCommonTestCase): | 
|  | exact_dtype = True | 
|  |  | 
|  | # Tests that the forward and backward passes of operations produce the | 
|  | #   same values for the cross-product of op variants (function, method, inplace) | 
|  | #   and runtimes (eager, traced, scripted). | 
|  | # TODO WARNING: inplace x {traced, scripted} not currently tested | 
|  | @_variant_ops(op_db) | 
|  | def test_variant_consistency_jit(self, device, dtype, op): | 
|  | _requires_grad = dtype in op.supported_backward_dtypes( | 
|  | torch.device(device).type | 
|  | ) | 
|  |  | 
|  | include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex | 
|  | samples = op.sample_inputs( | 
|  | device, | 
|  | dtype, | 
|  | requires_grad=_requires_grad, | 
|  | include_conjugated_inputs=include_conjugated_inputs, | 
|  | ) | 
|  |  | 
|  | # Acquires variants to test | 
|  | func = op.get_op() | 
|  | method = op.get_method() | 
|  | variants = { | 
|  | # TODO: inplace tests currently fail, fix and add inplace variant | 
|  | "function": func, | 
|  | "method": method, | 
|  | } | 
|  |  | 
|  | # scripting strips the torch.ops prefix from these operators | 
|  | # incorrectly; don't bother testing this case.  Count this | 
|  | # as "testing" | 
|  | if isinstance(func, torch._ops.OpOverload): | 
|  | self.skipTest("variant consistency doesn't work on torch.ops") | 
|  |  | 
|  | # TODO: find better way to standardize on op registration itself.. | 
|  | has_fake_function = op.name in ["resize_", "resize_as_"] | 
|  |  | 
|  | if has_fake_function: | 
|  | variants = {"method": getattr(torch.Tensor, op.name)} | 
|  | samples = op.sample_inputs(device, dtype, requires_grad=False) | 
|  |  | 
|  | tested = False | 
|  | for sample in samples: | 
|  | # Test traced and scripted consistency | 
|  | for func_type, variant in variants.items(): | 
|  | if variant is None: | 
|  | continue | 
|  |  | 
|  | # scripting and check_alias_analysis do not work with lambdas | 
|  | # lambdas are typically used as a way to simulate methods without | 
|  | # functional variants, so rely on the other variant for testing | 
|  | # for now | 
|  | if is_lambda(variant): | 
|  | continue | 
|  |  | 
|  | tested = True | 
|  | try: | 
|  | self.indiv_variant_test_jit( | 
|  | device, dtype, op, sample, func_type, variant, has_fake_function | 
|  | ) | 
|  | except Exception as e: | 
|  | variant_error_info = dedent( | 
|  | f""" | 
|  | Error testing {op.name} {func_type} variant | 
|  | with dtype: {dtype} | 
|  | with inputs {sample}: | 
|  | """ | 
|  | ) | 
|  | raise Exception(variant_error_info) from e  # noqa: TRY002 | 
|  |  | 
|  | assert tested, "JIT Test does not execute any logic" | 
|  |  | 
|  | def indiv_variant_test_jit( | 
|  | self, device, dtype, op, sample, func_type, variant, has_fake_function | 
|  | ): | 
|  | _requires_grad = dtype in op.supported_backward_dtypes( | 
|  | torch.device(device).type | 
|  | ) | 
|  | support_script = op.supports_scripting | 
|  | # Create accessor for script function variant | 
|  | name = op.name + "_" if func_type == "inplace" else op.name | 
|  |  | 
|  | # run with disable_autodiff_subgraph_inlining(True) to test | 
|  | #   autodiff support. Context manager forces the graph to contain | 
|  | #   DifferentiableGraph nodes if they are present | 
|  | with disable_autodiff_subgraph_inlining(): | 
|  | # Check scripted forward, grad, and grad grad | 
|  | if support_script: | 
|  | script_fn = create_script_fn(self, name, func_type) | 
|  |  | 
|  | def out_fn(output): | 
|  | # Processes the output for autograd | 
|  | if sample.output_process_fn_grad is not None: | 
|  | return sample.output_process_fn_grad(output) | 
|  | return output | 
|  |  | 
|  | def get_sample(): | 
|  | return ( | 
|  | clone_input_helper(sample.input) | 
|  | if op.name[-1] == "_" | 
|  | else sample.input | 
|  | ) | 
|  |  | 
|  | if support_script: | 
|  | check_against_reference( | 
|  | self, | 
|  | script_fn, | 
|  | op.get_op(), | 
|  | out_fn, | 
|  | (get_sample(),) + sample.args, | 
|  | sample.kwargs, | 
|  | no_grad=not _requires_grad, | 
|  | no_gradgrad=not op.supports_gradgrad, | 
|  | ) | 
|  |  | 
|  | # Check traced forward, grad, and grad grad | 
|  | # TODO: fix tracing here | 
|  | supports_tracing = op.supports_tracing and not has_fake_function | 
|  | if op.assert_jit_shape_analysis: | 
|  | self.assertTrue(supports_tracing) | 
|  |  | 
|  | if supports_tracing: | 
|  | traced_fn = create_traced_fn(self, variant) | 
|  | check_against_reference( | 
|  | self, | 
|  | traced_fn, | 
|  | op.get_op(), | 
|  | out_fn, | 
|  | (get_sample(),) + sample.args, | 
|  | sample.kwargs, | 
|  | no_grad=not _requires_grad, | 
|  | no_gradgrad=not op.supports_gradgrad, | 
|  | ) | 
|  |  | 
|  | # Check alias annotation schema for correctness (make | 
|  | #   sure inputs that aren't supposed to be modified aren't) | 
|  | # Note: only runs in float32 because schema isn't affected by dtype, | 
|  | #   so running it on all dtypes is would be excessive | 
|  | if dtype == torch.float32: | 
|  | # TODO: no reason why we cant run this with tracing graph | 
|  | if support_script and op.name != "rsub": | 
|  | check_alias_annotation( | 
|  | name, | 
|  | (get_sample(),) + sample.args, | 
|  | sample.kwargs, | 
|  | func_type=func_type, | 
|  | aten_name=op.aten_name, | 
|  | ) | 
|  |  | 
|  | # TODO: use script graph as well | 
|  | checked_shape_analysis = False | 
|  | if supports_tracing: | 
|  | out = variant(get_sample(), *sample.args, **sample.kwargs) | 
|  |  | 
|  | # right now, tuple of outputs and tensor output supported | 
|  | # TODO: list of tensor outputs | 
|  | tuple_of_tensors = isinstance(out, tuple) and all( | 
|  | isinstance(elem, torch.Tensor) for elem in out | 
|  | ) | 
|  |  | 
|  | if isinstance(out, torch.Tensor) or tuple_of_tensors: | 
|  | if tuple_of_tensors: | 
|  | sizes = [elem.size() for elem in out] | 
|  | else: | 
|  | sizes = out.size() | 
|  | self.checkShapeAnalysis( | 
|  | sizes, traced_fn.graph, op.assert_jit_shape_analysis | 
|  | ) | 
|  | checked_shape_analysis = True | 
|  | if op.assert_jit_shape_analysis: | 
|  | self.assertTrue(checked_shape_analysis) | 
|  |  | 
|  | # Check autodifferentiation of nodes for traced and scripted graphs, only need to check once per sample | 
|  | if dtype is torch.float32: | 
|  | # Sandcastle doesn't fuse nodes | 
|  | if IS_SANDCASTLE: | 
|  | # fusible nodes are expected to be found in FusionGroups in the DifferentiableGraphs | 
|  | nonfusible_nodes = ( | 
|  | op.autodiff_nonfusible_nodes + op.autodiff_fusible_nodes | 
|  | ) | 
|  | fusible_nodes = [] | 
|  | else: | 
|  | nonfusible_nodes = op.autodiff_nonfusible_nodes | 
|  | fusible_nodes = op.autodiff_fusible_nodes | 
|  |  | 
|  | if supports_tracing: | 
|  | self.assertAutodiffNode( | 
|  | traced_fn.last_graph, | 
|  | op.assert_autodiffed, | 
|  | nonfusible_nodes, | 
|  | fusible_nodes, | 
|  | ) | 
|  | if support_script: | 
|  | self.assertAutodiffNode( | 
|  | script_fn.last_graph, | 
|  | op.assert_autodiffed, | 
|  | nonfusible_nodes, | 
|  | fusible_nodes, | 
|  | ) | 
|  |  | 
|  | # alias testing is only done with torch.float for the same reason | 
|  | _alias_ops = partial(ops, dtypes=OpDTypes.supported, allowed_dtypes=(torch.float,)) | 
|  |  | 
|  | @_alias_ops(op for op in op_db if op.aliases) | 
|  | def test_jit_alias_remapping(self, device, dtype, op): | 
|  | # NOTE: only tests on first sample | 
|  | samples = op.sample_inputs(device, dtype, requires_grad=True) | 
|  | sample = first_sample(self, samples) | 
|  |  | 
|  | # [Scripting Data Preparation] | 
|  | # Prepare data for test scripting | 
|  | # Below we prepare strings of args/kwargs with and without type annotations. | 
|  | # These strings are inserted into function template strings which is then torch scripted. | 
|  | # - args string is ["t0"] corresponding to the "input" tensor required by the op | 
|  | # - args_kw is the value of args and strings of kwargs used to call the op (without type annotations), for example, | 
|  | # ["to", "1.0", "(1,)", "True", "tensor(1.0)"] -> def fn(t0): return variant(t0, 1.0, (1,), True, tensor(1.0)) | 
|  | args = ["t0"] | 
|  |  | 
|  | def quote_strs(v): | 
|  | if isinstance(v, str): | 
|  | return f"'{v}'" | 
|  |  | 
|  | return str(v) | 
|  |  | 
|  | args_kw = ( | 
|  | args | 
|  | + [f"{v}" for v in sample.args] | 
|  | + [f"{k}={quote_strs(v)}" for k, v in sample.kwargs.items()] | 
|  | ) | 
|  |  | 
|  | # Prepare data for test tracing | 
|  | sample_args_kwargs = () | 
|  | if len(sample.args) > 0: | 
|  | sample_args_kwargs += (sample.args,) | 
|  | if len(sample.kwargs) > 0: | 
|  | sample_args_kwargs += (sample.kwargs,) | 
|  |  | 
|  | original_name = op.aten_name | 
|  | original_name_inplace = original_name + "_" | 
|  | expected_dtype = op(sample.input, *sample.args, **sample.kwargs).dtype | 
|  |  | 
|  | for a_op in op.aliases: | 
|  | inplace = a_op.inplace_variant | 
|  | method_or_inplace = [a_op.inplace_variant, a_op.method_variant] | 
|  | variants = ( | 
|  | v | 
|  | for v in (a_op.op, a_op.method_variant, a_op.inplace_variant) | 
|  | if v is not None | 
|  | ) | 
|  |  | 
|  | # Test scripting: | 
|  | for variant in variants: | 
|  | variant_name = variant.__name__ | 
|  | op_name = original_name_inplace if variant is inplace else original_name | 
|  |  | 
|  | if variant in method_or_inplace: | 
|  | fn_template = """ | 
|  | def _fn(t0{c}): | 
|  | return t0.{alias_name}({args_kw}) | 
|  | """ | 
|  | # remove the first input tensor | 
|  | script = fn_template.format( | 
|  | c=", " if len(args_kw[1:]) > 1 else "", | 
|  | args_kw=", ".join(args_kw[1:]), | 
|  | alias_name=variant_name, | 
|  | ) | 
|  | else: | 
|  | fn_template = """ | 
|  | def _fn({args}): | 
|  | return variant({args_kw}) | 
|  | """ | 
|  | script = fn_template.format( | 
|  | args=", ".join(args), | 
|  | args_kw=", ".join(args_kw), | 
|  | ) | 
|  |  | 
|  | # Required to avoid undefined value: tensor error in JIT | 
|  | # compilation of the function template | 
|  | script = script.replace("tensor(", "torch.tensor(") | 
|  |  | 
|  | scripted = torch.jit.CompilationUnit(script)._fn | 
|  |  | 
|  | if variant is inplace and not torch.can_cast(expected_dtype, dtype): | 
|  | try: | 
|  | inp = clone_input_helper(sample.input) | 
|  | scripted(inp) | 
|  | except Exception as e: | 
|  | continue | 
|  | self.fail( | 
|  | "Inplace operation on integer tensor that should be promoted to float didn't fail!" | 
|  | ) | 
|  |  | 
|  | inp = clone_input_helper(sample.input) | 
|  | scripted(inp) | 
|  | inp = clone_input_helper(sample.input) | 
|  | graph = scripted.graph_for(inp) | 
|  | FileCheck().check(op.aten_name).check_not(variant_name).run(graph) | 
|  |  | 
|  | # Test tracing: | 
|  | for variant in variants: | 
|  | variant_name = variant.__name__ | 
|  | op_name = original_name_inplace if variant is inplace else original_name | 
|  |  | 
|  | def _fn(*sample_args, **sample_kwargs): | 
|  | return variant(*sample_args, **sample_kwargs) | 
|  |  | 
|  | inp = (clone_input_helper(sample.input),) + sample_args_kwargs | 
|  | traced = torch.jit.trace(_fn, *inp) | 
|  | inp = (clone_input_helper(sample.input),) + sample_args_kwargs | 
|  | traced(*inp) | 
|  | inp = (clone_input_helper(sample.input),) + sample_args_kwargs | 
|  | graph = traced.graph_for(*inp) | 
|  | FileCheck().check(op_name).check_not(variant_name).run(graph) | 
|  |  | 
|  |  | 
|  | instantiate_device_type_tests(TestJit, globals()) | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | TestCase._default_dtype_check_enabled = True | 
|  | run_tests() |