|  | syntax = "proto2"; | 
|  |  | 
|  | package caffe2; | 
|  |  | 
|  | // A few notes about the Caffe2's protobuffer convention: | 
|  | // (1) Most objects are registered by their types, such as operators and nets. | 
|  | //     For these, we have a string-type field "type" for registration purposes. | 
|  | // (2) We do not use extension because that used to create quite some conflicts | 
|  | //     in Caffe's protobuf design. | 
|  | // (3) We have not used any proto3 specific features, such as Any or Map. This | 
|  | //     is mainly for backward compatibility purposes but we may consider using | 
|  | //     those in the future. | 
|  |  | 
|  | // TensorProto stores serialized Tensor objects. | 
|  | message TensorProto { | 
|  | // The dimensions in the tensor. | 
|  | repeated int64 dims = 1; | 
|  |  | 
|  | // Data type | 
|  | enum DataType { | 
|  | UNDEFINED = 0; | 
|  |  | 
|  | // Basic types | 
|  | FLOAT = 1; // float | 
|  | INT32 = 2; // int | 
|  | BYTE = 3; // byte, when deserialized, is going to be restored as uint8 | 
|  | STRING = 4; // string | 
|  |  | 
|  | // Less-commonly used data types | 
|  | BOOL = 5; // bool | 
|  | UINT8 = 6; // uint8_t | 
|  | INT8 = 7; // int8_t | 
|  | UINT16 = 8; // uint16_t | 
|  | INT16 = 9; // int16_t | 
|  | INT64 = 10; // int64_t | 
|  | FLOAT16 = 12; // at::Half | 
|  | DOUBLE = 13; // double | 
|  |  | 
|  | ZERO_COLLISION_HASH = 14; // zero-collision hash state | 
|  | REBATCHING_BUFFER = 15; // rebatching buffer | 
|  | } | 
|  | // The type of the deserialized tensor data | 
|  | optional DataType data_type = 2 [ default = FLOAT ]; | 
|  |  | 
|  | // The format of the serialized data. | 
|  | enum SerializationFormat { | 
|  | // FMT_PROTOBUF is the existing serialization format from before the | 
|  | // data_format field was introduced. Most data types are serialized using | 
|  | // the protobuf typed fields, although in some cases raw little endian data | 
|  | // is stored in the byte_data field instead. | 
|  | FMT_PROTOBUF = 0; | 
|  | // bfloat16 data stored in the raw_data field. | 
|  | FMT_BFLOAT16 = 1; | 
|  | } | 
|  | // data_format is a SerializationFormat enum value. | 
|  | // However, we intentionally store it as an integer value so we can | 
|  | // distinguish between old messages that do not have a data_format value vs | 
|  | // new messages that have a SerializationFormat value that we don't | 
|  | // understand.  If we stored this as an enum then protobuf would deserialize | 
|  | // both of these cases the same way. | 
|  | optional uint32 data_format = 15 [ default = 0 ]; | 
|  |  | 
|  | // For float | 
|  | repeated float float_data = 3 [ packed = true ]; | 
|  | // For int32, uint8, int8, uint16, int16, bool, and float16 | 
|  | // Note about float16: in storage we will basically convert float16 byte-wise | 
|  | // to unsigned short and then store them in the int32_data field. | 
|  | // Note: storing int8 and uint8 values in this field unfortunately results in | 
|  | // larger serialized data than necessary, as protobuf's varint encoding | 
|  | // scheme requires 2 bytes to represent int8 and uint8 values that have the | 
|  | // MSB set. | 
|  | repeated int32 int32_data = 4 [ packed = true ]; | 
|  | // For bytes | 
|  | optional bytes byte_data = 5; | 
|  | // For strings | 
|  | repeated bytes string_data = 6; | 
|  | // For double | 
|  | repeated double double_data = 9 [ packed = true ]; | 
|  | // For int64 | 
|  | repeated int64 int64_data = 10 [ packed = true ]; | 
|  | // store the raw data, contents are serialized as little-endian | 
|  | optional bytes raw_data = 13; | 
|  |  | 
|  | // Optionally, a name for the tensor. | 
|  | optional string name = 7; | 
|  |  | 
|  | // Optionally, a TensorProto can contain the details about the device that | 
|  | // it was serialized from. This is useful in cases like snapshotting a whole | 
|  | // workspace in a multi-GPU environment. | 
|  | optional DeviceOption device_detail = 8; | 
|  |  | 
|  | // When loading from chunks this is going to indicate where to put data in the | 
|  | // full array. When not used full data have to be present | 
|  | message Segment { | 
|  | required int64 begin = 1; | 
|  | required int64 end = 2; | 
|  | } | 
|  | optional Segment segment = 11; | 
|  |  | 
|  | // Field numbers 12 and 14 were previously used for now-deprecated fields. | 
|  | // reserved 12, 14; | 
|  | } | 
|  |  | 
|  | message QTensorProto { | 
|  | repeated int64 dims = 1; | 
|  | required int32 precision = 2; | 
|  | required double scale = 3; | 
|  | required double bias = 4; | 
|  | required bool is_signed = 5; | 
|  | repeated int32 data = 6 [ packed = true ]; | 
|  | optional string name = 7; | 
|  | optional TensorProto.DataType data_type = 8 [ default = INT32 ]; | 
|  |  | 
|  | // Multi-group quantization params | 
|  | repeated double scales = 9; | 
|  | repeated double biases = 10; | 
|  |  | 
|  | // Multi-group quantization needed, indicates in which dimension | 
|  | // we do the "group wise quantization" | 
|  | optional int32 axis = 11; | 
|  |  | 
|  | // It should be true if it is a multi-group quantization proto | 
|  | optional bool is_multiparam = 12 [ default = false ]; | 
|  | } | 
|  |  | 
|  | // TensorProtos stores multiple TensorProto objects in one single proto. This | 
|  | // is useful for small tensors; For anything big, consider using a DB for | 
|  | // storage. | 
|  | message TensorProtos { | 
|  | repeated TensorProto protos = 1; | 
|  | } | 
|  |  | 
|  | message TensorShape { | 
|  | repeated int64 dims = 1; | 
|  | optional TensorProto.DataType data_type = 2 [ default = FLOAT ]; | 
|  | repeated int32 unknown_dims = 3; | 
|  | optional bool unknown_shape = 4 [ default = false ]; | 
|  | optional string name = 5; | 
|  | } | 
|  |  | 
|  | message TensorShapes { | 
|  | repeated TensorShape shapes = 1; | 
|  | } | 
|  |  | 
|  | // TensorBoundShape is used to save bound shape inference result for a tensor. | 
|  | // TensorBoundShape.shape is inferred shape for this tensor. | 
|  | // TensorBoundShape.dimType contains dim_type for every dimension. | 
|  | // eg: for dimension i, shape.dims[i] is the inferred shape and | 
|  | // dim_type[i] is corresponding dim_type. | 
|  | message TensorBoundShape { | 
|  | optional TensorShape shape = 1; | 
|  | enum DimType { | 
|  | UNKNOWN = 0; // unknown | 
|  | CONSTANT = 1; // constant | 
|  | // batch, corresponding dimension is batch_size | 
|  | BATCH = 2; | 
|  | // batch_of_feature_max, | 
|  | // corresponding shape is inferred_feature_length * batch_size | 
|  | BATCH_OF_FEATURE_MAX = 3; | 
|  | // batch_of_feature_max_default | 
|  | // corresponding shape is default_feature_length * batch_size | 
|  | BATCH_OF_FEATURE_MAX_DEFAULT = 4; | 
|  | // feature_max, corresponding shape is inferred_feature_length | 
|  | FEATURE_MAX = 5; | 
|  | // feature_max_default, corresponding shape is default_feature_length | 
|  | FEATURE_MAX_DEFAULT = 6; | 
|  | } | 
|  | repeated DimType dim_type = 2; // dim_type.size() == shape.dims.size() | 
|  | optional string name = 3; | 
|  | // a flag to indicate whether the shape is final and cannot be changed | 
|  | // eg: input/output of in-place ops | 
|  | optional bool shape_is_final = 4; | 
|  | } | 
|  |  | 
|  | message TensorBoundShapes { | 
|  | repeated TensorBoundShape shapes = 1; | 
|  | optional int64 max_batch_size = 2; | 
|  | optional int64 max_feature_len = 3; | 
|  | } | 
|  |  | 
|  | message AOTConfig { | 
|  | required int64 max_batch_size = 1; | 
|  | required int64 max_seq_size = 2; | 
|  | required bool in_batch_broadcast = 3; | 
|  | optional string onnxifi_blacklist_ops = 4; | 
|  | optional int32 onnxifi_min_ops = 5; | 
|  | } | 
|  |  | 
|  | // A named argument containing either singular float, integer and string | 
|  | // values, or repeated float, int and string arrays. | 
|  | message Argument { | 
|  | optional string name = 1; | 
|  |  | 
|  | optional float f = 2; | 
|  | optional int64 i = 3; | 
|  | optional bytes s = 4; | 
|  | optional TensorProto t = 10; | 
|  | optional NetDef n = 8; | 
|  |  | 
|  | repeated float floats = 5; | 
|  | repeated int64 ints = 6; | 
|  | repeated bytes strings = 7; | 
|  | repeated TensorProto tensors = 11; | 
|  | repeated NetDef nets = 9; | 
|  | repeated QTensorProto qtensors = 12; | 
|  | } | 
|  |  | 
|  | // DeviceType that Caffe2 currently supports. | 
|  | // Note: if you add a device type, make sure you add the corresponding device | 
|  | // line in the DeviceTypeName() function in caffe2/utils/proto_utils.cc | 
|  | // and update c10/core/DeviceType.h | 
|  | enum DeviceTypeProto { | 
|  | PROTO_CPU = 0; // In default, we will use CPU. | 
|  | PROTO_CUDA = 1; // CUDA. | 
|  | PROTO_MKLDNN = 2; // Reserved for explicit MKLDNN | 
|  | PROTO_OPENGL = 3; // OpenGL | 
|  | PROTO_OPENCL = 4; // OpenCL | 
|  | PROTO_IDEEP = 5; // IDEEP. | 
|  | PROTO_HIP = 6; // AMD HIP | 
|  | PROTO_FPGA = 7; // FPGA | 
|  | PROTO_MAIA = 8; // MAIA | 
|  | PROTO_XLA = 9; // XLA / TPU | 
|  | PROTO_MPS = 10; // MPS | 
|  | // Change the following number if you add more devices in the code. | 
|  | PROTO_COMPILE_TIME_MAX_DEVICE_TYPES = 11; | 
|  | } | 
|  |  | 
|  | // Device-specific options. We do not distinguish DeviceOption protos for | 
|  | // different DeviceTypes, so currently all devices share the same DeviceOption | 
|  | // proto. Fields that are specific to a device type is ignored if the type does | 
|  | // not match. | 
|  | // Note: if you add fields to the DeviceOption, make sure you add the | 
|  | // corresponding changes to IsSameDevice() function in utils/proto_utils.{h,cc}. | 
|  | message DeviceOption { | 
|  | // [general] Options that need to be carried out before running the execution. | 
|  | // optional DeviceType device_type = 1 [ default = CPU ]; | 
|  | optional int32 device_type = 1 [ default = 0 ]; // 0 is CPU. | 
|  | // [general] Used together with device_type to identify the exact device | 
|  | optional int32 device_id = 2; | 
|  | // [general] The random seed to start the device random number generator with. | 
|  | optional uint32 random_seed = 3; | 
|  | // [general] What node this op should execute on. | 
|  | // Used for net transformation purposes. Must be empty at execution time. | 
|  | optional string node_name = 4; | 
|  | // [CPU and Linux specific] NUMA node id | 
|  | optional int32 numa_node_id = 5; | 
|  | // [general] Extra information passed, not used at execution time currently. | 
|  | repeated string extra_info = 6; | 
|  | } | 
|  |  | 
|  | // Operator Definition. | 
|  | message OperatorDef { | 
|  | repeated string input = 1; // the name of the input blobs | 
|  | repeated string output = 2; // the name of output top blobs | 
|  | optional string name = 3; // the operator name. This is optional. | 
|  | // the operator type. This is needed to create the object from the operator | 
|  | // registry. | 
|  | optional string type = 4; | 
|  | // arg is for the argument defined in operator schema | 
|  | repeated Argument arg = 5; | 
|  |  | 
|  | // The device option that the operator should run under. | 
|  | optional DeviceOption device_option = 6; | 
|  |  | 
|  | // Optionally, one can specify an engine when there are multiple | 
|  | // implementations available simultaneously for one device type. | 
|  | // If one specifies an engine but that engine does not exist in the compiled | 
|  | // Caffe2 binary, Caffe2 will fall back to the default engine of that device | 
|  | // type. | 
|  | optional string engine = 7; | 
|  |  | 
|  | // Additional 'fake' inputs used for expressing control dependencies | 
|  | // in the operator graph. This can be used to ensure that an | 
|  | // operator does not run until another operator is ready, for e.g. | 
|  | // scheduling control. These are not passed as actual inputs to the | 
|  | // Operator implementation, and are only used by the Net class for | 
|  | // scheduling purposes. | 
|  | repeated string control_input = 8; | 
|  |  | 
|  | // is_gradient_op argument is only used as a hint in shape inference | 
|  | // and has no runtime significance | 
|  | optional bool is_gradient_op = 9 [ default = false ]; | 
|  |  | 
|  | // debug information associated with the construction of the operator. | 
|  | // This is an optional string with no assumed characteristics as | 
|  | // operators can be constructed in any language. | 
|  | optional string debug_info = 10; | 
|  |  | 
|  | // the domain of the operator to help runtime distinguish which operator | 
|  | // library this OperatorDef refers to. For example, both caffe2 and aten | 
|  | // has `Add` operator, with domain, we can easily decide which operator | 
|  | // to execute. to support multiple operator libs, we use domain to | 
|  | // distinguish which operator lib we refer to: | 
|  | //   - "caffe2" means this uses Caffe2 operator library | 
|  | //   - "aten" means this uses ATen operator library | 
|  | //   - "c10" is for the fused library | 
|  | //   - if the domain is missing or empty, we use "caffe2", this is for | 
|  | //     legacy models, new serializer should always export an OperatorDef | 
|  | //     with domain and op_version | 
|  | optional string domain = 11; | 
|  | // each operator is has its own version number. | 
|  | // operator version information | 
|  | // each time, we change the API or semantics of the operator, | 
|  | // we bump the version for the operator. | 
|  | // the runtime system should check the op_version of each OperatorDef | 
|  | // and decide it should reject or accept the model | 
|  | optional int64 op_version = 12; | 
|  | } | 
|  |  | 
|  | // MapFieldEntry follows the pattern for cross-proto-version maps. | 
|  | // See https://developers.google.com/protocol-buffers/docs/proto3#maps | 
|  | message MapFieldEntry { | 
|  | required string key = 1; | 
|  | required string val = 2; | 
|  | }; | 
|  |  | 
|  | // Used to hold backend-specific options. | 
|  | message BackendOptions { | 
|  | // Name of the backend that the specified options apply to. | 
|  | required string backend_name = 1; | 
|  | // Flexible map for passing in the options. | 
|  | repeated MapFieldEntry option = 2; | 
|  | }; | 
|  |  | 
|  | // Partition definition. | 
|  | message PartitionInfo { | 
|  | // Name of the partition. | 
|  | required string name = 1; | 
|  |  | 
|  | // A list of logic device ID, indicating which devices this partition | 
|  | // can be executed on. If empty, it means the partition won't run on | 
|  | // device but on host CPU instead. | 
|  | repeated int32 device_id = 2; | 
|  |  | 
|  | // Extra debug info. | 
|  | optional string extra_info = 3; | 
|  |  | 
|  | // Flexible map for passing options specific to a backend. | 
|  | repeated BackendOptions backend_options = 4; | 
|  | } | 
|  |  | 
|  | // Network definition. | 
|  | message NetDef { | 
|  | optional string name = 1; // the network's name | 
|  | // Operators that the network contains. | 
|  | // Note: this is not named "operator" because that is a reserved word in C++. | 
|  | repeated OperatorDef op = 2; | 
|  |  | 
|  | // The type of network that the net should be run with. This routes the | 
|  | // network instantiation to different execution modes. The default mode, | 
|  | // "simple", runs the operators in a sequential way as the original Caffe | 
|  | // implementation does. | 
|  | optional string type = 3; | 
|  |  | 
|  | // the number of workers, if the operators in the network is to be carried out | 
|  | // in parallel. | 
|  | // Note: This is to be deprecated. Using the arg field with "num_workers" as | 
|  | // key. | 
|  | // Note 2: The old uses of this were never actually cleaned up | 
|  | optional int32 num_workers = 4; | 
|  |  | 
|  | // The device option for the network. If a network has a specific device | 
|  | // option and one of its operators does not have it set, we will copy over the | 
|  | // device option to the operator. This allows us to basically avoid putting | 
|  | // device options at every operator. | 
|  | optional DeviceOption device_option = 5; | 
|  |  | 
|  | repeated Argument arg = 6; | 
|  |  | 
|  | // Two optional fields to declare external input and output of a net. | 
|  | // If these two are set, when a net is created, we will sanity check for | 
|  | // every op whether its input is declared (either as an external input, | 
|  | // or as an intermediate blob created by one of the ops), and sanity check | 
|  | // if all blobs in external_output are produced. | 
|  | // | 
|  | // In cases of memory optimization, declaring external_input and | 
|  | // external_output also ensures that storage of these blobs are persistent: | 
|  | // for any blob in external_input and external_output, after a network run | 
|  | // finishes, their content are actually the right content. Any intermediate | 
|  | // blobs' contents may be overwritten. | 
|  | repeated string external_input = 7; | 
|  | repeated string external_output = 8; | 
|  |  | 
|  | // Partitioning info, indexed by partition names. | 
|  | repeated PartitionInfo partition_info = 9; | 
|  | } | 
|  |  | 
|  | // ExecutionStep is actually a sort-of-hacky way we simulate iteration right | 
|  | // now. | 
|  | message ExecutionStep { | 
|  | // ExecutionStep should either contain a set of substeps, or a set of | 
|  | // network names to run in this execution step. They should NOT both be set | 
|  | // at the same time. | 
|  | optional string name = 1; | 
|  | // An execution step could be recursive, in which it involves a set of | 
|  | // substeps. | 
|  | repeated ExecutionStep substep = 2; | 
|  | // Alternatively, an execution step could involve one or more networks. | 
|  | // Note that you cannot have both substeps and networks. Choose one. | 
|  | // Note that an execution step refers networks by their name. The actual | 
|  | // network definition of the same name should be included in the network field | 
|  | // of the plan. The reason is that a network object might hold internal states | 
|  | // (think of a data layer), so we want to have the same network object that | 
|  | // multiple steps could ask to run. | 
|  | repeated string network = 3; | 
|  | // Number of iterations to run this step. The substeps or the networks | 
|  | // specified will be run sequentially, and one sequential run is considered | 
|  | // one iteration. If this is not set, the number of iterations is assumed to | 
|  | // be 1. | 
|  | optional int64 num_iter = 4; | 
|  |  | 
|  | // Criteria network specifies a single output (TensorCPU<bool>) of | 
|  | // size (1), is run on every iteration by the executor, and | 
|  | // execution terminates when the output[0] is `false`. | 
|  | optional string criteria_network = 5 [ deprecated = true ]; | 
|  |  | 
|  | // DEPRECATED. Use `run_every_ms`. | 
|  | optional string report_net = 7; | 
|  | optional int32 report_interval = 8; | 
|  |  | 
|  | // If provided, execute this step at every time interval (in millisecs) | 
|  | // while its sibiling execution steps execute in parallel. This step is | 
|  | // guaranteed to run at least once after all non-interval siblings finished. | 
|  | optional int64 run_every_ms = 11; | 
|  |  | 
|  | // If false or not set, execute sub-steps serially. | 
|  | // If true, execute all substeps concurrently, each one in a separate thread. | 
|  | optional bool concurrent_substeps = 6; | 
|  |  | 
|  | // Name of a scalar boolean tensor. | 
|  | // ES checks this blob AFTER every substeps/subnets. | 
|  | // If specified, and the value is true, then ES will skip the rest and return | 
|  | // immediately. | 
|  | // This means that the report_net and the first step will always be called. | 
|  | // Use cases: | 
|  | // 1) the first substep stops the rest if data condition not met | 
|  | // 2) the first substep decide which of the rest of the steps should be run. | 
|  | // 3) external control | 
|  | // | 
|  | // ** It is the user's responsibility to not to put this blob in race | 
|  | // conditions. | 
|  | // ** For example when setting this blob in concurrent substeps | 
|  | optional string should_stop_blob = 9; | 
|  |  | 
|  | // if only_once is true, this step will only be executed once. this ONLY takes | 
|  | // effect when using should_stop_blob | 
|  | optional bool only_once = 10; | 
|  |  | 
|  | // Whether to create a child workspace for this step. | 
|  | // If yes, the workflow and nets are re-created every time this step is run. | 
|  | optional bool create_workspace = 12; | 
|  |  | 
|  | // How many copies of the children execution steps to run concurrently. | 
|  | optional int32 num_concurrent_instances = 13; | 
|  | } | 
|  |  | 
|  | message PlanDef { | 
|  | // All the networks that are used in this execution. Note that networks should | 
|  | // be ordered in the way they are executed, i.e. for a layer in a network, all | 
|  | // its input blobs should already have been initialized by the layers or | 
|  | // networks defined before it. | 
|  | optional string name = 1; | 
|  | // The networks that are going to be used in this plan. | 
|  | repeated NetDef network = 2; | 
|  | repeated ExecutionStep execution_step = 3; | 
|  | } | 
|  |  | 
|  | // Protobuf format for blobs that are not Tensors. We use a key to store the | 
|  | // type of the blob. For example for a serialized DBProto, the type should | 
|  | // be "DBReader" and the content should be a serialized DBProto object. | 
|  | message BlobProto { | 
|  | optional string name = 1; | 
|  | optional string type = 2; | 
|  | optional TensorProto tensor = 3; | 
|  | optional bytes content = 4; | 
|  | optional QTensorProto qtensor = 5; | 
|  | // If blob is not Tensor and is divided into chunks, content_num_chunks | 
|  | // contains number of chunks, into which blob was divided. | 
|  | optional int32 content_num_chunks = 6; | 
|  | optional int32 content_chunk_id = 7; | 
|  | } | 
|  |  | 
|  | // Protobuf format to serialize DBReader. | 
|  | message DBReaderProto { | 
|  | // The name for the DB object in the workspace. | 
|  | optional string name = 1; | 
|  | // The source of the DB | 
|  | optional string source = 2; | 
|  | // The type of the DB | 
|  | optional string db_type = 3; | 
|  | // The current key of the DB if the DB supports seeking. | 
|  | optional string key = 4; | 
|  | } | 
|  |  | 
|  | message BlobSerializationOptions { | 
|  | // This set of options will only apply to blobs whose name matches this | 
|  | // pattern.  If the blob_name_pattern is empty then it will be treated as | 
|  | // matching all blobs. | 
|  | optional string blob_name_regex = 1; | 
|  |  | 
|  | // Note: | 
|  | // - a chunk_size of 0 means "use the default chunk size".  The default chunk | 
|  | //   size is controlled by the --caffe2_tensor_chunk_size command line flag. | 
|  | // - a chunk size of -1 means to disable chunking, and serialize the blob in | 
|  | //   a single chunk. | 
|  | optional int64 chunk_size = 2; | 
|  |  | 
|  | enum FloatFormat { | 
|  | // Use the current default serialization format, as chosen by the | 
|  | // current version of the code.  (At the time of writing this is PROTOBUF) | 
|  | FLOAT_DEFAULT = 0; | 
|  | // Store the data in the TensorProto's float_data field | 
|  | FLOAT_PROTOBUF = 1; | 
|  | // Serialize float values as bfloat16.  Note that this conversion is lossy. | 
|  | FLOAT_BFLOAT16 = 2; | 
|  | } | 
|  |  | 
|  | // Settings for how to serialize tensors containing float values | 
|  | optional FloatFormat float_format = 3; | 
|  | } | 
|  |  | 
|  | message SerializationOptions { | 
|  | // A set of options to use when serialializing blobs. | 
|  | // This is a list, sorted from highest to lowest precedence.  When | 
|  | // serializing a blob, the first entry whose blob_name_pattern matches the | 
|  | // blob name will be used. | 
|  | repeated BlobSerializationOptions options = 1; | 
|  | } |