| from __future__ import absolute_import, division, print_function, unicode_literals |
| import copy |
| import unittest |
| |
| import torch |
| import torch.jit |
| from torch.utils import mkldnn as mkldnn_utils |
| from common_utils import TestCase, run_tests, TemporaryFileName |
| |
| from torch.autograd.gradcheck import gradgradcheck, gradcheck |
| |
| |
| # Comment the line below to find out the CI machines having MKL-DNN build disabled |
| @unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled") |
| class TestMkldnn(TestCase): |
| def test_conversion(self): |
| for cpu_tensor in [torch.randn((1, 2, 3, 4), |
| dtype=torch.float, device=torch.device('cpu')), |
| torch.randn((1, 2, 3, 4, 5), |
| dtype=torch.float, device=torch.device('cpu'))[:, :, :, :, 1]]: |
| cpu_tensor.requires_grad_() |
| mkldnn_tensor = cpu_tensor.to_mkldnn() |
| cpu_tensor_1 = mkldnn_tensor.to_dense() |
| self.assertEqual(cpu_tensor, cpu_tensor_1) |
| self.assertEqual(mkldnn_tensor.dtype, torch.float) |
| self.assertEqual(mkldnn_tensor.device, torch.device('cpu')) |
| self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4])) |
| self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel()) |
| self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size()) |
| self.assertRaisesRegex(RuntimeError, |
| "Cannot access data pointer of Tensor that doesn't have storage", |
| lambda: mkldnn_tensor.data_ptr() != 0) |
| |
| def test_unsupported(self): |
| # unsupported types and unsupported types with gpu |
| for dtype in [torch.double, torch.half, torch.uint8, torch.int8, |
| torch.short, torch.int, torch.long]: |
| with self.assertRaises(RuntimeError) as context: |
| torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn() |
| if torch.cuda.is_available(): |
| with self.assertRaises(RuntimeError) as context: |
| torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn() |
| # supported type with gpu |
| if torch.cuda.is_available(): |
| with self.assertRaises(RuntimeError) as context: |
| torch.randn(1, 2, 3, 4, dtype=torch.float, device=torch.device('cuda')).to_mkldnn() |
| # some factory functions |
| for creator in [torch.empty, torch.ones, torch.zeros, torch.randn, torch.rand]: |
| with self.assertRaises(RuntimeError) as context: |
| creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn) |
| |
| def test_autograd_to_mkldnn(self): |
| # MKLDNN only supports float32 |
| root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True) |
| |
| def func(root): |
| return root.to_mkldnn().to_dense() |
| |
| # because MKLDNN only supports float32, we need to lessen the precision. |
| # these numbers are just empirical results that seem to work. |
| self.assertWarnsRegex(lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2), |
| 'double precision floating point') |
| self.assertWarnsRegex(lambda: gradgradcheck(func, [root], atol=4e-2, rtol=1e-2), |
| 'double precision floating point') |
| |
| def test_autograd_from_mkldnn(self): |
| # MKLDNN only supports float32 |
| root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_() |
| |
| def func(root): |
| return root.to_dense() |
| |
| # because MKLDNN only supports float32, we need to lessen the precision. |
| # these numbers are just empirical results that seem to work. |
| self.assertWarnsRegex(lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2), |
| 'double precision floating point') |
| |
| def test_detach(self): |
| root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_() |
| |
| detach = root.detach() |
| self.assertEqual((4, 5), detach.size()) |
| self.assertFalse(detach.requires_grad) |
| self.assertTrue(root.requires_grad) |
| |
| detach_ = root.detach_() |
| self.assertEqual((4, 5), detach_.size()) |
| self.assertFalse(detach_.requires_grad) |
| self.assertFalse(root.requires_grad) |
| |
| def test_repr(self): |
| self.assertTrue("layout=torch._mkldnn" in str(torch.randn((1, 2, 3, 4), |
| dtype=torch.float, device=torch.device('cpu')).to_mkldnn())) |
| |
| def test_conv2d(self): |
| for groups in [1, 4]: |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(1, 3, (1,)).item() * groups |
| M = torch.randint(1, 3, (1,)).item() * groups |
| x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100 |
| for bias in [True, False]: |
| conv2d = torch.nn.Conv2d(in_channels=C, |
| out_channels=M, |
| kernel_size=3, |
| stride=2, |
| padding=1, |
| bias=bias, |
| groups=groups).float() |
| mkldnn_conv2d = mkldnn_utils.to_mkldnn(copy.deepcopy(conv2d)) |
| self.assertEqual( |
| conv2d(x), |
| mkldnn_conv2d(x.to_mkldnn()).to_dense()) |
| |
| self._test_serialization(mkldnn_conv2d, (x.to_mkldnn(),)) |
| self._test_tracing(mkldnn_conv2d, (x.to_mkldnn(),)) |
| |
| def test_relu(self): |
| x = torch.randn((4, 5), dtype=torch.float32) * 10 |
| self.assertEqual(torch.relu(x), torch.relu(x.to_mkldnn()).to_dense()) |
| |
| def test_relu_(self): |
| x1 = torch.randn((4, 5), dtype=torch.float32) * 10 |
| x2 = x1.clone().to_mkldnn() |
| self.assertEqual(torch.relu_(x1), torch.relu_(x2).to_dense()) |
| |
| def test_max_pool2d(self): |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(3, 10, (1,)).item() |
| x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10 |
| |
| max_pool2d = torch.nn.MaxPool2d( |
| kernel_size=3, |
| stride=2, |
| padding=1) |
| |
| self.assertEqual( |
| max_pool2d(x), |
| max_pool2d(x.to_mkldnn()).to_dense()) |
| |
| def test_avg_pool2d(self): |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(3, 10, (1,)).item() |
| x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10 |
| |
| for count_include_pad in [True, False]: |
| avg_pool2d = torch.nn.AvgPool2d( |
| kernel_size=3, |
| stride=2, |
| padding=1, |
| count_include_pad=count_include_pad) |
| |
| self.assertEqual( |
| avg_pool2d(x), |
| avg_pool2d(x.to_mkldnn()).to_dense()) |
| |
| def test_adaptive_avg_pool2d(self): |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(3, 10, (1,)).item() |
| x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100 |
| |
| adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7) |
| |
| self.assertEqual( |
| adaptive_avg_pool2d(x), |
| adaptive_avg_pool2d(x.to_mkldnn()).to_dense()) |
| |
| def test_batch_norm2d(self): |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(3, 100, (1,)).item() |
| x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10 |
| |
| # TODO: support training |
| for train in [False]: |
| bn = torch.nn.BatchNorm2d(C).float().train(train) |
| mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn)) |
| self.assertEqual( |
| bn(x), |
| mkldnn_bn(x.to_mkldnn()).to_dense()) |
| |
| self._test_serialization(mkldnn_bn, (x.to_mkldnn(),)) |
| self._test_tracing(mkldnn_bn, (x.to_mkldnn(),)) |
| |
| def test_add(self): |
| N = torch.randint(3, 10, (1,)).item() |
| C = torch.randint(3, 100, (1,)).item() |
| alpha = torch.randn(1, dtype=torch.float32).item() |
| |
| x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10 |
| y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10 |
| mx = x.to_mkldnn() |
| my = y.to_mkldnn() |
| |
| # add |
| self.assertEqual( |
| x + y, |
| (mx + my).to_dense()) |
| |
| self.assertEqual( |
| torch.add(x, y, alpha=alpha), |
| torch.add(mx, my, alpha=alpha).to_dense()) |
| |
| # add_ |
| x += y |
| mx += my |
| self.assertEqual(x, mx.to_dense()) |
| |
| # add_out |
| out = x.clone() |
| mkldnn_out = out.to_mkldnn() |
| torch.add(x, y, alpha=alpha, out=out) |
| torch.add(mx, my, alpha=alpha, out=mkldnn_out) |
| self.assertEqual(out, mkldnn_out.to_dense()) |
| |
| def test_view(self): |
| x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn() |
| self.assertRaisesRegex(RuntimeError, |
| "Change to use reshape", |
| lambda: x.view(x.size(0), -1)) |
| |
| def test_reshape(self): |
| x = torch.randn(3, 4, 5, dtype=torch.float32) * 10 |
| size = (x.size(0), -1) |
| |
| self.assertEqual( |
| x.reshape(size), |
| x.to_mkldnn().reshape(size).to_dense(), |
| ) |
| |
| def test_clone(self): |
| x = torch.randn(4, 5, dtype=torch.float32) * 10 |
| self.assertEqual( |
| x.clone(), |
| x.to_mkldnn().clone().to_dense(), |
| ) |
| # test whether share same memory |
| y = x.to_mkldnn() |
| z = y.clone().add_(y) |
| self.assertNotEqual( |
| y.to_dense(), |
| z.to_dense(), |
| ) |
| |
| def test_linear(self): |
| in_features = torch.randint(3, 10, (1,)).item() |
| out_features = torch.randint(3, 100, (1,)).item() |
| x = torch.randn(3, in_features, dtype=torch.float32) * 10 |
| |
| for bias in [True, False]: |
| linear = torch.nn.Linear(in_features, out_features, bias=bias).float() |
| mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear)) |
| self.assertEqual( |
| linear(x), |
| mkldnn_linear(x.to_mkldnn()).to_dense()) |
| |
| self._test_serialization(mkldnn_linear, (x.to_mkldnn(),)) |
| self._test_tracing(mkldnn_linear, (x.to_mkldnn(),)) |
| |
| def test_sigmoid(self): |
| x = torch.randn(4, 5, dtype=torch.float32) * 10 |
| mkldnn_x = x.to_mkldnn() |
| self.assertEqual( |
| torch.sigmoid(x), |
| torch.sigmoid(mkldnn_x).to_dense(), |
| ) |
| # inplace |
| torch.sigmoid_(x) |
| torch.sigmoid_(mkldnn_x) |
| self.assertEqual(x, mkldnn_x.to_dense()) |
| |
| def _test_serialization(self, module, inputs): |
| with TemporaryFileName() as fname: |
| torch.jit.save(module, fname) |
| loaded = torch.jit.load(fname) |
| self.assertEqual( |
| module(*inputs).to_dense(), |
| loaded(*inputs).to_dense()) |
| |
| def _test_tracing(self, module, inputs): |
| traced = torch.jit.trace(module, inputs, check_trace=False) |
| self.assertEqual( |
| module(*inputs).to_dense(), |
| traced(*inputs).to_dense()) |
| |
| def test_set_data_tensorimpl_type(self): |
| # Dense tensor has impl of type `TensorImpl`, while MKL-DNN tensor has impl |
| # of type `OpaqueTensorImpl<IDeepTensorWrapperPtr>`. |
| x = torch.randn((1, 2), dtype=torch.float, device=torch.device('cpu')) |
| x_mkldnn = x.to_mkldnn() |
| with self.assertRaisesRegex(RuntimeError, 'different types of TensorImpl'): |
| x.data = x_mkldnn |
| |
| |
| if __name__ == '__main__': |
| run_tests() |