blob: 226b924ddc8287b8c443bb0e5c58a6785a75c60c [file] [log] [blame]
"""
The testing package contains testing-specific utilities.
"""
import torch
import random
FileCheck = torch._C.FileCheck
__all__ = [
'assert_allclose', 'make_non_contiguous', 'rand_like', 'randn_like'
]
rand_like = torch.rand_like
randn_like = torch.randn_like
def assert_allclose(actual, expected, rtol=None, atol=None, equal_nan=True):
if not isinstance(actual, torch.Tensor):
actual = torch.tensor(actual)
if not isinstance(expected, torch.Tensor):
expected = torch.tensor(expected, dtype=actual.dtype)
if expected.shape != actual.shape:
expected = expected.expand_as(actual)
if rtol is None or atol is None:
if rtol is not None or atol is not None:
raise ValueError("rtol and atol must both be specified or both be unspecified")
rtol, atol = _get_default_tolerance(actual, expected)
close = torch.isclose(actual, expected, rtol, atol, equal_nan)
if close.all():
return
# Find the worst offender
error = (expected - actual).abs()
expected_error = atol + rtol * expected.abs()
delta = error - expected_error
delta[close] = 0 # mask out NaN/inf
_, index = delta.reshape(-1).max(0)
# TODO: consider adding torch.unravel_index
def _unravel_index(index, shape):
res = []
for size in shape[::-1]:
res.append(int(index % size))
index = int(index // size)
return tuple(res[::-1])
index = _unravel_index(index.item(), actual.shape)
# Count number of offenders
count = (~close).long().sum()
msg = ('Not within tolerance rtol={} atol={} at input{} ({} vs. {}) and {}'
' other locations ({:2.2f}%)')
raise AssertionError(msg.format(
rtol, atol, list(index), actual[index].item(), expected[index].item(),
count - 1, 100 * count / actual.numel()))
def make_non_contiguous(tensor):
if tensor.numel() <= 1: # can't make non-contiguous
return tensor.clone()
osize = list(tensor.size())
# randomly inflate a few dimensions in osize
for _ in range(2):
dim = random.randint(0, len(osize) - 1)
add = random.randint(4, 15)
osize[dim] = osize[dim] + add
# narrow doesn't make a non-contiguous tensor if we only narrow the 0-th dimension,
# (which will always happen with a 1-dimensional tensor), so let's make a new
# right-most dimension and cut it off
input = tensor.new(torch.Size(osize + [random.randint(2, 3)]))
input = input.select(len(input.size()) - 1, random.randint(0, 1))
# now extract the input of correct size from 'input'
for i in range(len(osize)):
if input.size(i) != tensor.size(i):
bounds = random.randint(1, input.size(i) - tensor.size(i))
input = input.narrow(i, bounds, tensor.size(i))
input.copy_(tensor)
# Use .data here to hide the view relation between input and other temporary Tensors
return input.data
def get_all_dtypes():
return [torch.uint8, torch.bool, torch.int8, torch.int16, torch.int32, torch.int64,
torch.float16, torch.float32, torch.float64, torch.bfloat16]
def get_all_math_dtypes(device):
dtypes = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64,
torch.float32, torch.float64]
# torch.float16 is a math dtype on cuda but not cpu.
if device.startswith('cuda'):
dtypes.append(torch.float16)
return dtypes
def get_all_device_types():
return ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
# 'dtype': (rtol, atol)
_default_tolerances = {
'float64': (1e-5, 1e-8), # NumPy default
'float32': (1e-4, 1e-5), # This may need to be changed
'float16': (1e-3, 1e-3), # This may need to be changed
}
def _get_default_tolerance(a, b=None):
if b is None:
dtype = str(a.dtype).split('.')[-1] # e.g. "float32"
return _default_tolerances.get(dtype, (0, 0))
a_tol = _get_default_tolerance(a)
b_tol = _get_default_tolerance(b)
return (max(a_tol[0], b_tol[0]), max(a_tol[1], b_tol[1]))