blob: d4b4580b0153e6681eaafdd0af824caa4b192399 [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/core/op_registration/op_registration.h>
#include <ATen/NestedTensorImpl.h>
#include <c10/core/DispatchKey.h>
#include <c10/core/DispatchKeySet.h>
#include <c10/util/Exception.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/Logging.h>
#include <numeric>
#include <functional>
namespace {
inline void validate_nested_tensor_metadata(
const at::Tensor& nested_sizes,
const at::Tensor& nested_strides,
const at::Tensor& offsets) {
TORCH_INTERNAL_ASSERT(nested_sizes.is_contiguous());
int64_t size_dim = nested_sizes.dim();
TORCH_INTERNAL_ASSERT(size_dim == 0 || size_dim == 2);
TORCH_INTERNAL_ASSERT(nested_strides.is_contiguous());
TORCH_INTERNAL_ASSERT(nested_strides.dim() == size_dim);
TORCH_INTERNAL_ASSERT(nested_sizes.sizes() == nested_strides.sizes());
TORCH_INTERNAL_ASSERT(
(size_dim == 0 && offsets.size(0) == 0) ||
(size_dim == 2 && nested_sizes.size(0) == offsets.size(0)));
}
/**
* Generates a nested key_set from a non-nested tensor.
*
* When creating a nested tensor from a non-nested tensor
* We want to maintain the same keyset as the buffer but
* swap non nested keys for nested ones
*
* @return Appropriate key set for nested tensor
*/
inline c10::DispatchKeySet generate_nested_key_set_from_buffer(
const at::Tensor& buffer) {
auto nested_key_set = buffer.key_set();
const bool has_autograd = nested_key_set.has_any(c10::autograd_dispatch_keyset);
// Remove non_nested tensor specific keys
nested_key_set = nested_key_set -
c10::DispatchKeySet{c10::DispatchKey::Dense, c10::DispatchKey::Autograd};
// Add nested tensor specific keys
nested_key_set =
nested_key_set | c10::DispatchKeySet{c10::DispatchKey::NestedTensor};
nested_key_set =
has_autograd ? nested_key_set | c10::autograd_nested : nested_key_set;
return nested_key_set;
}
/**
* Generates a the correct view keyset.
*
* When creating a nested tensor view of base
* The appropriate keyset will be dependent on the nested
* status of the base
*
* @return Appropriate key set for nested tensor
*/
c10::DispatchKeySet get_view_key_set(const at::Tensor& base) {
return base.is_nested() ? base.key_set()
: generate_nested_key_set_from_buffer(base);
}
} // namespace
namespace at {
namespace native {
inline std::vector<int64_t> construct_opt_sizes(const at::Tensor& sizes) {
// torch.tensor([]) is considered to have `dim() = 1` and `size(0) = 0`
// torch.nested_tensor([]) should also has `dim() = 1` and `size(0) = 0`
if (sizes.dim() == 0) {
return std::vector<int64_t>({0});
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(sizes.dim() == 2);
std::vector<int64_t> result(1, sizes.sizes()[0]);
if (sizes.dim() > 0) {
size_t nested_dim = result.size();
int64_t* sizes_ptr = sizes.data_ptr<int64_t>();
result.resize(nested_dim + sizes.sizes()[1]);
int64_t sizes_size_0 = sizes.sizes()[0];
int64_t sizes_size_1 = sizes.sizes()[1];
for (const auto i : c10::irange(sizes_size_1)) {
result[nested_dim + i] = sizes_ptr[i];
}
for (const auto j : c10::irange(sizes_size_1)) {
for (const auto i : c10::irange(sizes_size_0)) {
if (result[nested_dim + j] &&
(result[nested_dim + j] != sizes_ptr[i * sizes.size(1) + j])) {
result[nested_dim + j] = -1;
}
}
}
}
return result;
}
// assume contiguous, we can construct stride from size
inline at::Tensor construct_nested_strides(const at::Tensor& sizes) {
// empty `sizes` means empty nested tensor, so return empty strides
if (sizes.dim() == 0) {
return sizes;
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(sizes.dim() == 2);
int64_t orig_dim = sizes.size(1);
// `sizes`.sizes() = ntensors x 0 means empty but shaped `sizes`
// in this case strides is also empty but shaped
if (orig_dim == 0) {
return sizes;
}
at::Tensor strides = sizes.new_empty(sizes.sizes());
const int64_t* sizes_ptr = sizes.data_ptr<int64_t>();
int64_t* strides_ptr = strides.data_ptr<int64_t>();
for (int64_t i = 0; i < sizes.size(0); i++) {
strides_ptr[orig_dim - 1] = 1;
int64_t product = sizes_ptr[orig_dim - 1];
for (int64_t j = orig_dim - 2; j >= 0; j--) {
strides_ptr[j] = product;
product *= sizes_ptr[j];
}
sizes_ptr += orig_dim;
strides_ptr += orig_dim;
}
return strides;
}
/**
* Create a tensor of offsets assuming the nested tensor is contiguous
*
* This function iterates over the implicit ntensor outer dimension
* populating a tensor with the num_elements in each implicit tensor.
* The first element is always 0 and the length of the returned tensor
* is n_tensor.
*
* @return A tensor of offsets
*/
inline at::Tensor construct_offsets(const at::Tensor& sizes) {
// empty `sizes` means empty nested tensor, so return empty strides
if (sizes.dim() == 0) {
return at::empty({0}, sizes.options().dtype(kLong));
}
int64_t ntensors = sizes.size(0), orig_dim = sizes.size(1);
auto offsets = at::empty({ntensors}, sizes.options());
int64_t *offsets_ptr = offsets.mutable_data_ptr<int64_t>();
// nesting scalars has easy offsets
if (orig_dim == 0) {
std::iota(offsets_ptr, offsets_ptr + ntensors, 0);
return offsets;
}
const int64_t* sizes_ptr = sizes.data_ptr<int64_t>();
offsets_ptr[0] = 0;
for (const auto i : c10::irange(ntensors - 1)) {
const int64_t row_product = std::accumulate(sizes_ptr, sizes_ptr + orig_dim, 1, std::multiplies<int64_t>());
offsets_ptr[i + 1] = offsets_ptr[i] + row_product;
sizes_ptr += orig_dim;
}
return offsets;
}
NestedTensorImpl::NestedTensorImpl(
Storage storage,
c10::DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
at::Tensor nested_sizes,
at::Tensor nested_strides,
at::Tensor storage_offsets)
: TensorImpl(std::move(storage), key_set, data_type),
nested_sizes_(std::move(nested_sizes)),
nested_strides_(std::move(nested_strides)),
storage_offsets_(std::move(storage_offsets)),
opt_sizes_(c10::nullopt) {
C10_LOG_API_USAGE_ONCE("torch.NestedTensor");
TORCH_WARN_ONCE(
"The PyTorch API of nested tensors is in prototype stage and will change "
"in the near future.");
auto storage_device = storage_.device();
TORCH_INTERNAL_ASSERT(
storage_device.is_cpu() || storage_device.is_cuda() || storage_device.is_privateuseone(),
"NestedTensorImpl storage must be either CUDA, CPU or ", get_privateuse1_backend(), " but got ",
storage_device);
validate_nested_tensor_metadata(nested_sizes_, nested_strides_, storage_offsets_);
refresh_dim();
set_custom_sizes_strides(c10::TensorImpl::SizesStridesPolicy::CustomSizes);
}
NestedTensorImpl::NestedTensorImpl(
at::Tensor buffer,
at::Tensor nested_sizes,
at::Tensor nested_strides,
at::Tensor storage_offsets)
: NestedTensorImpl(
buffer.storage(),
generate_nested_key_set_from_buffer(buffer),
buffer.dtype(),
nested_sizes,
nested_strides,
storage_offsets) {
TORCH_INTERNAL_ASSERT(
buffer.dim() == 1,
"NestedTensorImpl buffer is required to be 1 dimensional but got a buffer with ",
buffer.dim(),
" dimensions.");
}
// assume contiguous, `nested_strides` and `offsets`
// can be infered from `nested_sizes`
NestedTensorImpl::NestedTensorImpl(
at::Tensor buffer,
at::Tensor nested_sizes)
: NestedTensorImpl(
buffer,
nested_sizes,
construct_nested_strides(nested_sizes),
construct_offsets(nested_sizes))
{}
NestedTensorImpl::NestedTensorImpl(
c10::TensorImpl::ImplType impl_type,
const at::Tensor& base_tensor,
at::Tensor nested_sizes,
at::Tensor nested_strides,
at::Tensor storage_offsets)
: TensorImpl(impl_type, Storage(base_tensor.storage()), get_view_key_set(base_tensor), base_tensor.dtype()),
nested_sizes_(std::move(nested_sizes)),
nested_strides_(std::move(nested_strides)),
storage_offsets_(std::move(storage_offsets)),
opt_sizes_(c10::nullopt) {
validate_nested_tensor_metadata(nested_sizes_, nested_strides_, storage_offsets_);
refresh_dim();
set_custom_sizes_strides(c10::TensorImpl::SizesStridesPolicy::CustomSizes);
}
c10::optional<int64_t> NestedTensorImpl::opt_size(int64_t d) const {
if (C10_UNLIKELY(!opt_sizes_.has_value())) {
// Cache the metadata to avoid recomputing it each time.
opt_sizes_ = c10::make_optional(construct_opt_sizes(nested_sizes_));
}
d = at::maybe_wrap_dim(d, dim(), false);
if ((*opt_sizes_)[d] == -1) {
return c10::nullopt;
}
return (*opt_sizes_)[d];
}
void NestedTensorImpl::refresh_dim() {
const auto my_dim = nested_sizes_.dim() ? nested_sizes_.sizes()[1] + 1 : 1;
sizes_and_strides_.resize(my_dim);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dim() == my_dim);
}
int64_t NestedTensorImpl::dim_custom() const {
return dim_default();
}
// Currently sizes and strides assume contiguous
int64_t NestedTensorImpl::numel_custom() const {
if (nested_sizes_.dim() == 0) {
return 0;
}
return get_numel_from_nested_size_tensor(nested_sizes_);
}
c10::SymInt NestedTensorImpl::sym_numel_custom() const {
return NestedTensorImpl::numel_custom();
}
bool NestedTensorImpl::is_contiguous_custom(MemoryFormat) const {
return nested_tensor_impl_is_contiguous(this);
}
IntArrayRef NestedTensorImpl::sizes_custom() const {
TORCH_CHECK(false, "Internal error: NestedTensorImpl doesn't support sizes. Please file an issue.");
}
c10::SymIntArrayRef NestedTensorImpl::sym_sizes_custom() const {
TORCH_CHECK(false, "Internal error: NestedTensorImpl doesn't support sizes. Please file an issue.");
}
c10::SymIntArrayRef NestedTensorImpl::sym_strides_custom() const {
TORCH_CHECK(false, "Internal error: NestedTensorImpl doesn't support strides. Please file an issue.");
}
IntArrayRef NestedTensorImpl::strides_custom() const {
TORCH_CHECK(false, "Internal error: NestedTensorImpl doesn't support strides. Please file an issue.");
}
const char* NestedTensorImpl::tensorimpl_type_name() const {
return "NestedTensorImpl";
}
template <typename VariableVersion>
c10::intrusive_ptr<TensorImpl> NestedTensorImpl::shallow_copy_and_detach_core(
VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
if (key_set_.has(DispatchKey::Python) &&
!c10::impl::tls_is_dispatch_key_excluded(DispatchKey::Python)) {
auto r = pyobj_slot_.load_pyobj_interpreter()->detach(this);
if (r) {
r->set_version_counter(std::forward<VariableVersion>(version_counter));
r->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
return r;
}
// otherwise just copy the TensorImpl and not the PyObject. Since
// the interpreter is dead no one can call us out on it
}
auto impl = c10::make_intrusive<NestedTensorImpl>(
storage_,
key_set_,
data_type_,
nested_sizes_,
nested_strides_,
storage_offsets_);
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/std::forward<VariableVersion>(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
return impl;
}
c10::intrusive_ptr<TensorImpl> NestedTensorImpl::shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
version_counter, allow_tensor_metadata_change);
}
c10::intrusive_ptr<TensorImpl> NestedTensorImpl::shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
return shallow_copy_and_detach_core(
std::move(version_counter), allow_tensor_metadata_change);
}
int64_t get_numel_from_nested_size_tensor(const at::Tensor& tensor) {
constexpr auto numel_max = std::min(
static_cast<uint64_t>(std::numeric_limits<int64_t>::max()),
static_cast<uint64_t>(std::numeric_limits<size_t>::max()));
const int64_t* sizes_ptr = tensor.data_ptr<int64_t>();
const auto nt_dim = tensor.size(1);
uint64_t num_elements{0};
for (const auto i : c10::irange(tensor.size(0))) {
uint64_t n = 1;
const auto start{sizes_ptr + i * nt_dim};
const auto end{start + nt_dim};
bool overflows = c10::safe_multiplies_u64(start, end, &n);
num_elements += n;
overflows |= (num_elements > numel_max);
TORCH_CHECK(!overflows, "numel: integer multiplication overflow");
}
return static_cast<int64_t>(num_elements);
}
} // namespace native
} // namespace at