| import os |
| import sys |
| |
| import torch |
| from torch.fx import symbolic_trace, subgraph_rewriter |
| |
| # Make the helper files in test/ importable |
| pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
| sys.path.append(pytorch_test_dir) |
| from torch.testing._internal.jit_utils import JitTestCase |
| |
| if __name__ == '__main__': |
| raise RuntimeError("This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_fx.py TESTNAME\n\n" |
| "instead.") |
| |
| class TestSubgraphRewriter(JitTestCase): |
| |
| def test_subgraph_rewriter_preserves_logic(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| val = torch.neg(x) + torch.relu(x) |
| return torch.add(val, val) |
| |
| def pattern(x): |
| return torch.neg(x) + torch.relu(x) |
| |
| def comparison(x): |
| val = torch.neg(x) + torch.relu(x) |
| return torch.add(val, val) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.rand(1, 3) |
| |
| # Replace `pattern` with the same pattern (shouldn't change |
| # the underlying logic) |
| subgraph_rewriter.replace_pattern(traced, pattern, pattern) |
| |
| traced.graph.lint(traced) |
| |
| ref_output = comparison_fn(x) |
| test_output = traced.forward(x) |
| self.assertEqual(ref_output, test_output) |
| |
| def test_subgraph_rewriter_with_oneliner_pattern(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| val = torch.neg(x) |
| return torch.add(val, val) |
| |
| def pattern(x): |
| return torch.neg(x) |
| |
| def replacement(x): |
| return torch.relu(x) |
| |
| def comparison(x): |
| val = torch.relu(x) |
| return torch.add(val, val) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.rand(1, 3) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_output = comparison_fn(x) |
| test_output = traced.forward(x) |
| self.assertEqual(ref_output, test_output) |
| |
| def test_subgraph_rewriter_single_pattern_match(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| val = torch.neg(x) + torch.relu(x) |
| return torch.add(val, val) |
| |
| def pattern(x): |
| return torch.neg(x) + torch.relu(x) |
| |
| def replacement(x): |
| return torch.relu(x) |
| |
| def comparison(x): |
| val = torch.relu(x) |
| return torch.add(val, val) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.rand(1, 3) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_output = comparison_fn(x) |
| test_output = traced.forward(x) |
| self.assertEqual(ref_output, test_output) |
| |
| def test_subgraph_rewriter_multiple_pattern_match(self): |
| class M(torch.nn.Module): |
| def forward(self, x, w1, w2): |
| m1 = torch.cat([w1, w2]).sum() |
| m2 = torch.cat([w1, w2]).sum() |
| return x + torch.max(m1) + torch.max(m2) |
| |
| def pattern(w1, w2): |
| return torch.cat([w1, w2]).sum() |
| |
| def replacement(w1, w2): |
| return torch.stack([w1, w2]) |
| |
| def comparison(x, w1, w2): |
| m1 = torch.stack([w1, w2]) |
| m2 = torch.stack([w1, w2]) |
| return x + torch.max(m1) + torch.max(m2) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.rand(1, 3) |
| w1 = torch.rand(1, 3) |
| w2 = torch.rand(1, 3) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x, w1, w2) |
| test_outs = traced.forward(x, w1, w2) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_graph_argument_order(self): |
| class M(torch.nn.Module): |
| def forward(self, x, y): |
| return torch.mm(x, y) |
| |
| def pattern(x, y): |
| return torch.mm(x, y) |
| |
| def comparison(x, y): |
| return torch.mm(x, y) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.randn(3, 4) |
| y = torch.randn(4, 5) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, pattern) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x, y) |
| test_outs = traced.forward(x, y) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_correct_output_replacement(self): |
| class M(torch.nn.Module): |
| def forward(self, x, y): |
| val = torch.neg(y) + torch.relu(x) |
| return torch.add(val, val) |
| |
| def pattern(x): |
| return torch.relu(x) |
| |
| def replacement(x): |
| return torch.neg(x) |
| |
| def comparison(x, y): |
| val = torch.neg(y) + torch.neg(x) |
| return torch.add(val, val) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.randn(4, 4) |
| y = torch.randn(4, 4) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x, y) |
| test_outs = traced.forward(x, y) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_traced_as_callable(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| val = torch.neg(x) + torch.relu(x) |
| return torch.add(val, val) |
| |
| class Pattern(torch.nn.Module): |
| def forward(self, x): |
| return torch.neg(x) + torch.relu(x) |
| |
| class Replacement(torch.nn.Module): |
| def forward(self, x): |
| return torch.sigmoid(x) |
| |
| def comparison(x): |
| val = torch.sigmoid(x) |
| return torch.add(val, val) |
| |
| traced = symbolic_trace(M()) |
| traced_pattern = symbolic_trace(Pattern()) |
| traced_replacement = symbolic_trace(Replacement()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.randn(3, 4) |
| |
| subgraph_rewriter.replace_pattern(traced, traced_pattern, traced_replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x) |
| test_outs = traced.forward(x) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_pattern_is_entire_graph(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| a = torch.neg(x) |
| return torch.add(a, a) |
| |
| def pattern(x): |
| a = torch.neg(x) |
| return torch.add(a, a) |
| |
| def replacement(x): |
| a = torch.sigmoid(x) |
| return torch.cat([a, a]) |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(replacement) |
| |
| x = torch.randn(3, 4) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x) |
| test_outs = traced.forward(x) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched(self): |
| class M(torch.nn.Module): |
| def forward(self, x): |
| y = torch.relu(x) |
| return torch.neg(y) - y |
| |
| def pattern(x): |
| return torch.relu(x) |
| |
| def replacement(x): |
| return torch.sigmoid(x) |
| |
| def comparison(x): |
| y = torch.sigmoid(x) |
| return torch.neg(y) - y |
| |
| traced = symbolic_trace(M()) |
| comparison_fn = symbolic_trace(comparison) |
| |
| x = torch.randn(3, 4) |
| |
| subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| ref_outs = comparison_fn(x) |
| test_outs = traced.forward(x) |
| self.assertEqual(ref_outs, test_outs) |
| |
| def test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched(self): |
| class M(torch.nn.Module): |
| def forward(self, x, w1, w2, b1, b2): |
| m0 = torch.cat([w1, w2]) |
| m1 = torch.cat([w1, w2]) |
| m2 = torch.cat([x, b2]) |
| t0 = torch.addmm(b1, m1, m2.t()) |
| t1 = torch.sum(w1, 1) |
| t2 = torch.addmm(b1, m1, m2.t()) |
| return torch.sum(t1), torch.sum(t2) |
| |
| def pattern(x, w1, w2, b1, b2): |
| m1 = torch.cat([w1, w2]) |
| m2 = torch.cat([x, b2]) |
| return torch.addmm(b1, m1, m2.t()) |
| |
| def replacement(x, w1, w2, b1, b2): |
| return torch.cat([x, w1, w2]) |
| |
| traced = symbolic_trace(M()) |
| |
| # Result should be [] since no matches can be found |
| res = subgraph_rewriter.replace_pattern(traced, pattern, replacement) |
| |
| traced.graph.lint(traced) |
| |
| self.assertEqual(res, []) |