blob: 7870b6ff050b743fb918661f93a45ab926a434b8 [file] [log] [blame]
#include <ATen/native/RNN.h>
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/core/op_registration/op_registration.h>
#include <ATen/cpp_custom_type_hack.h>
#include <ATen/native/quantized/cpu/packed_params.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qnnpack_utils.h>
#include <torch/custom_class.h>
#include <torch/library.h>
torch::class_<LinearPackedParamsBase> register_linear_params();
namespace at { namespace native {
namespace {
// Check if pytorch is compiled with MIOpen.
bool use_miopen(const at::Tensor& input, const double dropout_state) {
bool is_miopen_acceptable = ((input.scalar_type() == at::kFloat)|| (input.scalar_type() == at::kHalf)) &&
(detail::getCUDAHooks().compiledWithMIOpen()) &&
(input.is_cuda()) &&
(dropout_state == 0.0) &&
(at::globalContext().userEnabledCuDNN());
return is_miopen_acceptable;
}
template<typename T>
using pair_of = std::pair<T, T>;
template<typename T>
using tpair_of = std::tuple<T, T>;
// Those could have been function pointers, but MSVC chokes on function pointers as template parameters
struct tanh_f {
Tensor operator()(const Tensor& t) const { return at::tanh(t); }
};
struct relu_f {
Tensor operator()(const Tensor& t) const { return at::relu(t); }
};
struct PackedSequence {
PackedSequence() = default;
PackedSequence(Tensor _data, Tensor _batch_sizes)
: data(std::move(_data)), batch_sizes(std::move(_batch_sizes)) {}
Tensor data;
Tensor batch_sizes;
};
// Simple type for __getstate__/__setstate__ serialization
//
// Element 0 is a string key to say what kind of CellParam this is. It
// should be a valid key into cell_params_deserializers
// Element 1 is the Tensors contained within the CellParams instance
// Element 2 is the doubles (if any) contained in the CellParams instance
// Element 3 is the longs (if any) contained within the CellParams instance
using CellParamsSerializationType = std::tuple<
std::string,
std::vector<at::Tensor>,
std::vector<double>,
std::vector<int64_t>,
std::vector<c10::intrusive_ptr<LinearPackedParamsBase>>>;
// Base class so we can polymorphically handle these
struct CellParamsBase : torch::CustomClassHolder {
virtual Tensor matmul_ih(const Tensor& input) const = 0;
virtual Tensor matmul_hh(const Tensor& h) const = 0;
// by default doing nothing. CellParams will override this
// to define correct behavior for LSTMs with projections.
// This function is not pure virtual, because it's useful to
// provide this default implementation, so that all cell params
// that don't support projections work correctly (e.g. QuantizedCellParams variations)
virtual Tensor matmul_hr(const Tensor& h) const {
return h;
}
virtual Tensor linear_ih(const Tensor& input_ih) const = 0;
virtual Tensor linear_hh(const Tensor& input_hh) const = 0;
virtual const Tensor& b_ih() const = 0;
virtual const Tensor& b_hh() const = 0;
virtual CellParamsSerializationType __getstate__() const = 0;
};
// Pretty much all cells we support take the same set of arguments, but threading those
// 4 arguments manually is really annoying. Their lifetime is externally managed, so we only
// pass this struct of references around. LSTMs with projections have 5th argument w_hr, for all
// other models it's always going to be undefined.
struct CellParams : public CellParamsBase {
CellParams(
const Tensor& _w_ih,
const Tensor& _w_hh,
const Tensor& _b_ih,
const Tensor& _b_hh,
const Tensor& _w_hr)
: w_ih(_w_ih), w_hh(_w_hh), b_ih_(_b_ih), b_hh_(_b_hh), w_hr(_w_hr) {};
const Tensor& w_ih;
const Tensor& w_hh;
const Tensor& b_ih_; /* optional */
const Tensor& b_hh_; /* optional */
const Tensor& w_hr; /* only defined for LSTMs with projections */
Tensor matmul_ih(const Tensor& input) const override {
return at::matmul(input, w_ih.t());
}
Tensor matmul_hh(const Tensor& h) const override {
return at::matmul(h, w_hh.t());
}
Tensor matmul_hr(const Tensor& h) const override {
if (w_hr.defined()) {
return at::matmul(h, w_hr.t());
}
return h;
}
Tensor linear_ih(const Tensor& input) const override {
return at::linear(input, w_ih, b_ih_);
}
Tensor linear_hh(const Tensor& h) const override {
return at::linear(h, w_hh, b_hh_);
}
const Tensor& b_ih() const override {
return b_ih_;
}
const Tensor& b_hh() const override {
return b_hh_;
}
CellParamsSerializationType __getstate__() const override {
TORCH_INTERNAL_ASSERT(false, "Not yet implemented");
}
static c10::intrusive_ptr<CellParamsBase> __setstate__(
CellParamsSerializationType state) {
TORCH_INTERNAL_ASSERT(false, "Not yet implemented");
}
};
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params(
const at::Tensor& w_ih,
const at::Tensor& w_hh,
at::Tensor bias_ih,
at::Tensor bias_hh);
struct QuantizedCellParams : public CellParamsBase {
QuantizedCellParams(
Tensor _w_ih,
Tensor _w_hh,
Tensor _b_ih,
Tensor _b_hh,
Tensor _packed_ih,
Tensor _packed_hh,
Tensor _col_offsets_ih,
Tensor _col_offsets_hh,
const Scalar& _scale_ih,
const Scalar& _scale_hh,
const Scalar& _zero_point_ih,
const Scalar& _zero_point_hh)
: w_ih(std::move(_w_ih)),
w_hh(std::move(_w_hh)),
b_ih_(std::move(_b_ih)),
b_hh_(std::move(_b_hh)),
packed_ih(std::move(_packed_ih)),
packed_hh(std::move(_packed_hh)),
col_offsets_ih(std::move(_col_offsets_ih)),
col_offsets_hh(std::move(_col_offsets_hh)),
scale_ih(std::move(_scale_ih)),
scale_hh(std::move(_scale_hh)),
zero_point_ih(std::move(_zero_point_ih)),
zero_point_hh(std::move(_zero_point_hh)) {}
const Tensor w_ih;
const Tensor w_hh;
const Tensor b_ih_;
const Tensor b_hh_;
const Tensor packed_ih;
const Tensor packed_hh;
const Tensor col_offsets_ih;
const Tensor col_offsets_hh;
const Scalar scale_ih;
const Scalar scale_hh;
const Scalar zero_point_ih;
const Scalar zero_point_hh;
Tensor matmul_ih(const Tensor& input) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor matmul_hh(const Tensor& h) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor linear_ih(const Tensor& input) const override {
return at::fbgemm_linear_int8_weight_fp32_activation(
input, w_ih, packed_ih, col_offsets_ih, scale_ih, zero_point_ih, b_ih_);
}
Tensor linear_hh(const Tensor& h) const override {
return at::fbgemm_linear_int8_weight_fp32_activation(
h, w_hh, packed_hh, col_offsets_hh, scale_hh, zero_point_hh, b_hh_);
}
const Tensor& b_ih() const override {
return b_ih_;
}
const Tensor& b_hh() const override {
return b_hh_;
}
CellParamsSerializationType __getstate__() const override {
std::vector<at::Tensor> tensors_to_serialize = {
w_ih, w_hh, b_ih_, b_hh_, col_offsets_ih, col_offsets_hh};
std::vector<double> doubles_to_serialize = {scale_ih.toDouble(),
scale_hh.toDouble()};
std::vector<int64_t> longs_to_serialize = {zero_point_ih.toLong(),
zero_point_hh.toLong()};
return CellParamsSerializationType(
"quantized",
std::move(tensors_to_serialize),
std::move(doubles_to_serialize),
std::move(longs_to_serialize),
{});
}
static c10::intrusive_ptr<CellParamsBase> __setstate__(
CellParamsSerializationType state) {
std::vector<at::Tensor> tensors;
std::vector<double> doubles;
std::vector<int64_t> longs;
std::tie(std::ignore, tensors, doubles, longs, std::ignore) =
std::move(state);
TORCH_INTERNAL_ASSERT(tensors.size() == 6);
TORCH_INTERNAL_ASSERT(doubles.size() == 2);
TORCH_INTERNAL_ASSERT(longs.size() == 2);
at::Tensor qw_ih = std::move(tensors[0]), qw_hh = std::move(tensors[1]),
b_ih = std::move(tensors[2]), b_hh = std::move(tensors[3]),
col_offsets_ih = std::move(tensors[4]),
col_offsets_hh = std::move(tensors[5]);
double scale_ih = doubles[0], scale_hh = doubles[1];
int64_t zero_point_ih = longs[0], zero_point_hh = longs[1];
at::Tensor packed_ih = at::native::fbgemm_pack_quantized_matrix(qw_ih);
at::Tensor packed_hh = at::native::fbgemm_pack_quantized_matrix(qw_hh);
return c10::make_intrusive<QuantizedCellParams>(
/*w_ih=*/std::move(qw_ih),
/*w_hh=*/std::move(qw_hh),
/*b_ih_=*/std::move(b_ih),
/*b_hh_=*/std::move(b_hh),
/*packed_ih=*/std::move(packed_ih),
/*packed_hh=*/std::move(packed_hh),
/*col_offsets_ih=*/std::move(col_offsets_ih),
/*col_offsets_hh=*/std::move(col_offsets_hh),
/*scale_ih=*/std::move(scale_ih),
/*scale_hh=*/std::move(scale_hh),
/*zero_point_ih=*/std::move(zero_point_ih),
/*zero_point_hh=*/std::move(zero_point_hh));
}
};
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params(
const at::Tensor& w_ih,
const at::Tensor& w_hh,
at::Tensor b_ih,
at::Tensor b_hh) {
auto make_vals = [&](const at::Tensor& W) {
auto params = at::native::fbgemm_linear_quantize_weight(W);
at::Tensor packed_weight =
at::native::fbgemm_pack_quantized_matrix(std::get<0>(params));
return std::tuple_cat(
std::make_tuple(std::move(packed_weight)), std::move(params));
};
at::Tensor qw_ih, qw_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh;
at::Scalar scale_ih, scale_hh, zero_point_ih, zero_point_hh;
std::tie(packed_ih, qw_ih, col_offsets_ih, scale_ih, zero_point_ih) =
make_vals(w_ih);
std::tie(packed_hh, qw_hh, col_offsets_hh, scale_hh, zero_point_hh) =
make_vals(w_hh);
return c10::make_intrusive<QuantizedCellParams>(
/*qw_ih=*/std::move(qw_ih),
/*qw_hh=*/std::move(qw_hh),
/*b_ih=*/std::move(b_ih),
/*b_hh=*/std::move(b_hh),
/*packed_ih=*/std::move(packed_ih),
/*packed_hh=*/std::move(packed_hh),
/*col_offsets_ih=*/std::move(col_offsets_ih),
/*col_offsets_hh=*/std::move(col_offsets_hh),
/*scale_ih=*/std::move(scale_ih),
/*scale_hh=*/std::move(scale_hh),
/*zero_point_ih=*/std::move(zero_point_ih),
/*zero_point_hh=*/std::move(zero_point_hh));
}
// QuantizedCellParams vs. QuantizedCellParamsDynamic
//
// QuantizedCellParams uses the legacy
// fbgemm_linear_int8_weight_fp32_activation API, which requires the explicit
// scale and zero point parameters for the weight. QuantizedCellParamsDynamic
// uses the new fbgemm_linear_dynamic API, which doesn't require the explicit
// scale and zero point parameters. These quantization parameters are
// encapsulated in the `PackedLinearWeight` struct in
// aten/src/ATen/native/quantized/cpu/fbgemm_utils.h.
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params_dynamic(
c10::intrusive_ptr<LinearPackedParamsBase> w_ih_packed,
c10::intrusive_ptr<LinearPackedParamsBase> w_hh_packed,
at::Tensor bias_ih,
at::Tensor bias_hh,
bool reduce_range);
struct QuantizedCellParamsDynamic : public CellParamsBase {
QuantizedCellParamsDynamic(
c10::intrusive_ptr<LinearPackedParamsBase>
_packed_w_ih, /* Prepacked Weight Tensor */
c10::intrusive_ptr<LinearPackedParamsBase>
_packed_w_hh, /* Prepacked Weight Tensor */
Tensor _b_ih, /* float Bias Tensor */
Tensor _b_hh, /* float Bias Tensor */
bool _reduce_range = false /* Use reduced range for activation tensors */)
: packed_w_ih(std::move(_packed_w_ih)),
packed_w_hh(std::move(_packed_w_hh)),
b_ih_(std::move(_b_ih)),
b_hh_(std::move(_b_hh)),
reduce_range_(_reduce_range) {}
c10::intrusive_ptr<LinearPackedParamsBase> packed_w_ih;
c10::intrusive_ptr<LinearPackedParamsBase> packed_w_hh;
const Tensor b_ih_;
const Tensor b_hh_;
bool reduce_range_;
Tensor matmul_ih(const Tensor& input) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor matmul_hh(const Tensor& h) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor linear_ih(const Tensor& input_ih) const override {
return packed_w_ih->apply_dynamic(input_ih, reduce_range_);
}
Tensor linear_hh(const Tensor& input_hh) const override {
return packed_w_hh->apply_dynamic(input_hh, reduce_range_);
}
const Tensor& b_ih() const override {
return b_ih_;
}
const Tensor& b_hh() const override {
return b_hh_;
}
CellParamsSerializationType __getstate__() const override {
// Boxed dispatch nonsense
// This will be cleaned up in the subsequent PR
auto unpacked_ih = packed_w_ih->unpack();
auto unpacked_hh = packed_w_hh->unpack();
std::vector<at::Tensor> tensors_to_serialize{
/*b_ih=*/b_ih_,
/*b_hh=*/b_hh_,
};
std::vector<c10::intrusive_ptr<LinearPackedParamsBase>>
packed_params_to_serialize{packed_w_ih, packed_w_hh};
// reduce_range parameter is serialized along with the int field values.
return CellParamsSerializationType(
"quantized_dynamic",
std::move(tensors_to_serialize),
{},
{reduce_range_},
std::move(packed_params_to_serialize));
}
static c10::intrusive_ptr<CellParamsBase> __setstate__(
CellParamsSerializationType state) {
std::vector<at::Tensor> tensors;
std::vector<c10::intrusive_ptr<LinearPackedParamsBase>> packed_params;
std::vector<int64_t> serialized_ints;
std::tie(std::ignore, tensors, std::ignore, serialized_ints, packed_params) =
std::move(state);
TORCH_INTERNAL_ASSERT(tensors.size() == 2);
TORCH_INTERNAL_ASSERT(packed_params.size() == 2);
bool reduce_range = serialized_ints.empty() ? false : serialized_ints[0];
return make_quantized_cell_params_dynamic(
/*w_ih_packed=*/std::move(packed_params[0]),
/*w_hh_packed=*/std::move(packed_params[1]),
/*bias_ih=*/std::move(tensors[0]),
/*bias_hh=*/std::move(tensors[1]),
/*reduce_range=*/reduce_range);
}
};
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params_dynamic(
c10::intrusive_ptr<LinearPackedParamsBase> w_ih_packed,
c10::intrusive_ptr<LinearPackedParamsBase> w_hh_packed,
at::Tensor bias_ih,
at::Tensor bias_hh,
bool reduce_range) {
return c10::make_intrusive<QuantizedCellParamsDynamic>(
/*_packed_w_ih=*/std::move(w_ih_packed),
/*_packed_w_hh=*/std::move(w_hh_packed),
/*_b_ih=*/std::move(bias_ih),
/*_b_hh=*/std::move(bias_hh),
/*_reduce_range=*/reduce_range);
}
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params_fp16(
c10::intrusive_ptr<LinearPackedParamsBase> w_ih_packed,
c10::intrusive_ptr<LinearPackedParamsBase> w_hh_packed);
struct QuantizedCellParamsFP16 : public CellParamsBase {
QuantizedCellParamsFP16(
c10::intrusive_ptr<LinearPackedParamsBase> _packed_ih,
c10::intrusive_ptr<LinearPackedParamsBase> _packed_hh)
: packed_ih(std::move(_packed_ih)), packed_hh(std::move(_packed_hh)) {}
c10::intrusive_ptr<LinearPackedParamsBase> packed_ih;
c10::intrusive_ptr<LinearPackedParamsBase> packed_hh;
const Tensor b_ih_;
const Tensor b_hh_;
Tensor matmul_ih(const Tensor& /* unused */) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor matmul_hh(const Tensor& /* unused */) const override {
TORCH_CHECK(false, "matmul is not supported with quantized cell params");
}
Tensor linear_ih(const Tensor& input) const override {
return packed_ih->apply_dynamic(input);
}
Tensor linear_hh(const Tensor& h) const override {
return packed_hh->apply_dynamic(h);
}
const Tensor& b_ih() const override {
return b_ih_;
}
const Tensor& b_hh() const override {
return b_hh_;
}
CellParamsSerializationType __getstate__() const override {
std::vector<c10::intrusive_ptr<LinearPackedParamsBase>>
packed_params_to_serialize{packed_ih, packed_hh};
return CellParamsSerializationType(
"quantized_fp16", {}, {}, {}, std::move(packed_params_to_serialize));
}
static c10::intrusive_ptr<CellParamsBase> __setstate__(
CellParamsSerializationType state) {
std::vector<c10::intrusive_ptr<LinearPackedParamsBase>> packed_params;
std::tie(
std::ignore, std::ignore, std::ignore, std::ignore, packed_params) =
std::move(state);
TORCH_INTERNAL_ASSERT(packed_params.size() == 2);
return make_quantized_cell_params_fp16(
/*w_ih_packed=*/std::move(packed_params[0]),
/*w_hh_packed=*/std::move(packed_params[1]));
}
};
c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params_fp16(
c10::intrusive_ptr<LinearPackedParamsBase> w_ih_packed,
c10::intrusive_ptr<LinearPackedParamsBase> w_hh_packed) {
return c10::make_intrusive<QuantizedCellParamsFP16>(
std::move(w_ih_packed), std::move(w_hh_packed));
}
static std::unordered_map<
std::string,
c10::intrusive_ptr<CellParamsBase> (*)(CellParamsSerializationType)>
cell_params_deserializers = {
{"quantized", &QuantizedCellParams::__setstate__},
{"quantized_dynamic", &QuantizedCellParamsDynamic::__setstate__},
{"quantized_fp16", &QuantizedCellParamsFP16::__setstate__}};
// Stupid wrapper to convert from -> to .
struct QRNNCellParamsWrapper {
QRNNCellParamsWrapper(c10::intrusive_ptr<CellParamsBase> param)
: param_(std::move(param)) {}
Tensor matmul_ih(const Tensor& input) const {
return param_->matmul_ih(input);
}
Tensor matmul_hh(const Tensor& h) const {
return param_->matmul_hh(h);
}
Tensor matmul_hr(const Tensor& h) const {
return param_->matmul_hr(h);
}
Tensor linear_ih(const Tensor& input) const {
return param_->linear_ih(input);
}
Tensor linear_hh(const Tensor& h) const {
return param_->linear_hh(h);
}
const Tensor& b_ih() const {
return param_->b_ih();
}
const Tensor& b_hh() const {
return param_->b_hh();
}
c10::intrusive_ptr<CellParamsBase> param_;
};
// Gathers every two elements of a vector in a vector of pairs
template<typename T>
static std::vector<pair_of<T>> pair_vec(const std::vector<T>& vals) {
TORCH_CHECK(vals.size() % 2 == 0, "Odd number of params or hiddens given to a bidirectional RNN");
std::vector<pair_of<T>> result;
result.reserve(vals.size() / 2);
for (size_t i = 0; i < vals.size(); i += 2) {
result.emplace_back(vals[i], vals[i + 1]);
}
return result;
}
// Flattens a vector of pairs
template<typename T>
static std::vector<T> unpair_vec(std::vector<pair_of<T>>&& vals) {
std::vector<T> result;
result.reserve(vals.size() * 2);
for (size_t i = 0; i < vals.size(); i++) {
result.push_back(std::move(vals[i].first));
result.push_back(std::move(vals[i].second));
}
return result;
}
// Parses a flat list of parameter tensors into a list of CellParams
static std::vector<CellParams> gather_params(TensorList params, bool has_biases, bool has_projections = false) {
static at::Tensor undefined;
std::vector<CellParams> result;
if (has_biases) {
if (has_projections) {
TORCH_CHECK(params.size() % 5 == 0, "got an incorrect number of RNN parameters");
for (size_t i = 0; i < params.size(); i += 5) {
result.emplace_back(params[i], params[i + 1], params[i + 2], params[i + 3], params[i + 4]);
}
} else {
TORCH_CHECK(params.size() % 4 == 0, "got an incorrect number of RNN parameters");
for (size_t i = 0; i < params.size(); i += 4) {
result.emplace_back(params[i], params[i + 1], params[i + 2], params[i + 3], undefined);
}
}
} else {
if (has_projections) {
TORCH_CHECK(params.size() % 3 == 0, "got an incorrect number of RNN parameters");
for (size_t i = 0; i < params.size(); i += 3) {
result.emplace_back(params[i], params[i + 1], undefined, undefined, params[i + 2]);
}
} else {
TORCH_CHECK(params.size() % 2 == 0, "got an incorrect number of RNN parameters");
for (size_t i = 0; i < params.size(); i += 2) {
result.emplace_back(params[i], params[i + 1], undefined, undefined, undefined);
}
}
}
return result;
}
// These gather_* functions are kept solely for the purposes of backward
// compatbility in the legacy quantized_{lstm,gru} APIs
static c10::List<c10::intrusive_ptr<CellParamsBase>> gather_quantized_params(
c10::List<at::Tensor> params) {
static at::Tensor undefined;
std::vector<c10::intrusive_ptr<CellParamsBase>> result;
TORCH_CHECK(params.size() % 12 == 0, "got an incorrect number of quantized RNN parameters");
for (size_t i = 0; i < params.size(); i += 12) {
result.emplace_back(c10::make_intrusive<QuantizedCellParams>(
static_cast<at::Tensor>(params[i]),
static_cast<at::Tensor>(params[i + 1]),
static_cast<at::Tensor>(params[i + 2]),
static_cast<at::Tensor>(params[i + 3]),
static_cast<at::Tensor>(params[i + 4]),
static_cast<at::Tensor>(params[i + 5]),
static_cast<at::Tensor>(params[i + 6]),
static_cast<at::Tensor>(params[i + 7]),
static_cast<at::Tensor>(params[i + 8]).item(),
static_cast<at::Tensor>(params[i + 9]).item(),
static_cast<at::Tensor>(params[i + 10]).item(),
static_cast<at::Tensor>(params[i + 11]).item()));
}
return c10::List<c10::intrusive_ptr<CellParamsBase>>(result);
}
static c10::List<c10::intrusive_ptr<CellParamsBase>>
gather_quantized_params_dynamic(c10::List<at::Tensor> params) {
static at::Tensor undefined;
std::vector<c10::intrusive_ptr<CellParamsBase>> result;
for (size_t i = 0; i < params.size(); i += 2) {
auto packed_struct_ih =
cpp_custom_type_hack::cast<c10::intrusive_ptr<LinearPackedParamsBase>>(
static_cast<at::Tensor>(params[i]));
auto packed_struct_hh =
cpp_custom_type_hack::cast<c10::intrusive_ptr<LinearPackedParamsBase>>(
static_cast<at::Tensor>(params[i + 1]));
auto bias_ih = packed_struct_ih->bias().value_or(undefined);
auto bias_hh = packed_struct_hh->bias().value_or(undefined);
result.emplace_back(c10::make_intrusive<QuantizedCellParamsDynamic>(
std::move(packed_struct_ih),
std::move(packed_struct_hh),
std::move(bias_ih),
std::move(bias_hh)));
}
return c10::List<c10::intrusive_ptr<CellParamsBase>>(result);
}
static c10::List<c10::intrusive_ptr<CellParamsBase>>
gather_quantized_params_fp16(c10::List<at::Tensor> params) {
static at::Tensor undefined;
std::vector<c10::intrusive_ptr<CellParamsBase>> result;
TORCH_CHECK(params.size() % 4 == 0,
"incorrect number of quantized RNN parameters FP16");
for (size_t i = 0; i < params.size(); i += 4) {
c10::intrusive_ptr<LinearPackedParamsBase> packed_struct_ih =
cpp_custom_type_hack::cast<c10::intrusive_ptr<LinearPackedParamsBase>>(
static_cast<at::Tensor>(params[i]));
c10::intrusive_ptr<LinearPackedParamsBase> packed_struct_hh =
cpp_custom_type_hack::cast<c10::intrusive_ptr<LinearPackedParamsBase>>(
static_cast<at::Tensor>(params[i + 1]));
// NB: we install the bias from the gathered parameters here because
// in the "new world", the fp16 linear apply() method always expects
// the bias to be present in the packed struct. In the "old world",
// we called `fbgemm_linear_fp16_weight_fp32_activation`, which took
// the bias explicitly and ignored the bias in the packed struct. To
// reconcile serialized models that behavied in the old style, we
// put the bias into the appropriate packed structures here.
//
// Hopefully we can remove this in the future when we eliminate
// the old style altogether
packed_struct_ih->set_bias(params[i + 2]);
packed_struct_hh->set_bias(params[i + 3]);
result.emplace_back(c10::make_intrusive<QuantizedCellParamsFP16>(
std::move(packed_struct_ih), std::move(packed_struct_hh)));
}
return c10::List<c10::intrusive_ptr<CellParamsBase>>(result);
}
////////////////////////////////////////////////////////////////////////////////
// HIDDEN STATE FUNCTIONS
//
// Functions implemented below are implemented as templates based on hidden type,
// because they need to work both with simple RNNs and GRU (which use a single Tensor),
// as well as with LSTM (or possibly more complicated architectures in the future).
// Still, there are some operations that need to be performed on the hidden states
// alone, and for this purpose we provide an overloaded set of functions below.
Tensor hidden_as_output(const Tensor& t) { return t; }
Tensor hidden_as_output(const tpair_of<Tensor>& t) { return std::get<0>(t); }
template<size_t index>
std::vector<Tensor> project(at::ArrayRef<tpair_of<Tensor>> tuples) {
std::vector<Tensor> result;
result.reserve(tuples.size());
for (auto & t : tuples) {
result.push_back(std::get<index>(t));
}
return result;
}
Tensor hidden_concat(at::ArrayRef<Tensor> hiddens) { return at::cat(hiddens, 0); }
tpair_of<Tensor> hidden_concat(at::ArrayRef<tpair_of<Tensor>> hiddens) {
return std::make_tuple(hidden_concat(project<0>(hiddens)), hidden_concat(project<1>(hiddens)));
}
Tensor hidden_slice(const Tensor& t, int64_t start, int64_t end) {
return t.narrow(0, start, end - start);
}
tpair_of<Tensor> hidden_slice(const tpair_of<Tensor>& t, int64_t start, int64_t end) {
return std::make_tuple(hidden_slice(std::get<0>(t), start, end),
hidden_slice(std::get<1>(t), start, end));
}
////////////////////////////////////////////////////////////////////////////////
// CELL IMPLEMENTATIONS
//
// Cell is a basic component of an RNN, representing a single application of the
// recurrent function. You can think of it as a function of signature
//
// (Tensor input, hidden_type hidden, CellParams) -> hidden_type
//
// which means that it consumes an input tensor, and updates the previous hidden state.
// It's a struct only because functional programming in C++ is a pain, and it's easier
// to pass around "vtable pointers" than actual function pointers.
void check_rnn_cell_forward_input(const Tensor& input, int64_t input_size) {
TORCH_CHECK(
input.size(1) == input_size,
"input has inconsistent input_size: got ", input.size(1), " expected ", input_size);
}
void check_rnn_cell_forward_hidden(const Tensor& input, const Tensor& hx, int64_t hidden_size, int64_t hidden_label) {
TORCH_CHECK(
input.size(0) == hx.size(0),
"Input batch size ", input.size(0), " doesn't match hidden", hidden_label, " batch size ", hx.size(0));
TORCH_CHECK(
hx.size(1) == hidden_size,
"hidden", hidden_label, " has inconsistent hidden_size: got ", hx.size(1), ", expected ", hidden_size);
}
template<typename hidden_type_tmpl, typename cell_params_tmpl>
struct Cell {
using hidden_type = hidden_type_tmpl;
using cell_params = cell_params_tmpl;
virtual ~Cell() {} // This is really dumb, but enables projects with
// -Wnon-virtual-dtor to compile...
virtual hidden_type operator()(
const Tensor& input,
const hidden_type& hidden,
const cell_params& params,
bool pre_compute_input = false) const = 0;
};
template<typename nonlinearity, typename cell_params>
struct SimpleCell : Cell<Tensor, cell_params> {
using hidden_type = Tensor;
Tensor operator()(
const Tensor& input,
const Tensor& hidden,
const cell_params& params,
bool pre_compute_input = false) const override {
return nonlinearity{}(params.linear_hh(hidden).add_(
pre_compute_input ? input : params.linear_ih(input)));
}
};
// TODO: can use inplace ops?
template <typename cell_params>
struct LSTMCell : Cell<std::tuple<Tensor, Tensor>, cell_params> {
using hidden_type = std::tuple<Tensor, Tensor>;
hidden_type operator()(
const Tensor& input,
const hidden_type& hidden,
const cell_params& params,
bool pre_compute_input = false) const override {
const auto& hx = std::get<0>(hidden);
const auto& cx = std::get<1>(hidden);
if (input.is_cuda()) {
TORCH_CHECK(!pre_compute_input);
auto igates = params.matmul_ih(input);
auto hgates = params.matmul_hh(hx);
auto result = at::_thnn_fused_lstm_cell(
igates, hgates, cx, params.b_ih(), params.b_hh());
// applying projections if w_hr is defined
auto hy = params.matmul_hr(std::get<0>(result));
// Slice off the workspace argument (it's needed only for AD).
return std::make_tuple(std::move(hy), std::move(std::get<1>(result)));
}
const auto gates = params.linear_hh(hx).add_(
pre_compute_input ? input : params.linear_ih(input));
auto chunked_gates = gates.unsafe_chunk(4, 1);
auto ingate = chunked_gates[0].sigmoid_();
auto forgetgate = chunked_gates[1].sigmoid_();
auto cellgate = chunked_gates[2].tanh_();
auto outgate = chunked_gates[3].sigmoid_();
auto cy = (forgetgate * cx).add_(ingate * cellgate);
auto hy = outgate * cy.tanh();
hy = params.matmul_hr(hy);
return std::make_tuple(std::move(hy), std::move(cy));
}
};
template <typename cell_params>
struct GRUCell : Cell<Tensor, cell_params> {
using hidden_type = Tensor;
hidden_type operator()(
const Tensor& input,
const hidden_type& hidden,
const cell_params& params,
bool pre_compute_input = false) const override {
if (input.is_cuda()) {
TORCH_CHECK(!pre_compute_input);
auto igates = params.matmul_ih(input);
auto hgates = params.matmul_hh(hidden);
auto result = at::_thnn_fused_gru_cell(
igates, hgates, hidden, params.b_ih(), params.b_hh());
// Slice off the workspace argument (it's needed only for AD).
return std::move(std::get<0>(result));
}
const auto chunked_igates = pre_compute_input
? input.unsafe_chunk(3, 1)
: params.linear_ih(input).unsafe_chunk(3, 1);
auto chunked_hgates = params.linear_hh(hidden).unsafe_chunk(3, 1);
const auto reset_gate =
chunked_hgates[0].add_(chunked_igates[0]).sigmoid_();
const auto input_gate =
chunked_hgates[1].add_(chunked_igates[1]).sigmoid_();
const auto new_gate =
chunked_igates[2].add(chunked_hgates[2].mul_(reset_gate)).tanh_();
return (hidden - new_gate).mul_(input_gate).add_(new_gate);
}
};
////////////////////////////////////////////////////////////////////////////////
// LAYER IMPLEMENTATIONS
//
// Layers are scan-like higher-order functions, which take in cells, and
// transform them to functions of signature
//
// (io_type input, hidden_type hidden, param_type params) -> (io_type, hidden_type)
//
// which can apply the cell over a sequence of inputs, and produce both a new set
// of hidden states, as well as a concatenated output of each step.
template<typename output_type, typename hidden_type>
struct LayerOutput {
output_type outputs;
hidden_type final_hidden;
};
template<typename io_type, typename hidden_type, typename param_type>
struct Layer {
using output_type = LayerOutput<io_type, hidden_type>;
virtual ~Layer() {} // This is really dumb, but enables projects with
// -Wnon-virtual-dtor to compile...
virtual output_type operator()(
const io_type& input,
const hidden_type& input_hidden,
const param_type& params) const = 0;
};
template<typename hidden_type, typename cell_params>
struct FullLayer : Layer<Tensor, hidden_type, cell_params> {
using output_type =
typename Layer<Tensor, hidden_type, cell_params>::output_type;
using unstacked_output_type = LayerOutput<std::vector<Tensor>, hidden_type>;
FullLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
unstacked_output_type operator()(
const std::vector<Tensor>& step_inputs,
const hidden_type& input_hidden,
const cell_params& params,
bool pre_compute_input = false) const {
std::vector<Tensor> step_outputs;
auto hidden = input_hidden;
for (const auto& input : step_inputs) {
hidden = cell_(input, hidden, params, pre_compute_input);
step_outputs.emplace_back(hidden_as_output(hidden));
}
return {step_outputs, hidden};
}
output_type operator()(
const Tensor& inputs,
const hidden_type& input_hidden,
const cell_params& params) const override {
if (inputs.device().is_cpu()) {
const auto inputs_w = params.linear_ih(inputs);
auto unstacked_output =
(*this)(inputs_w.unbind(0), input_hidden, params, true);
return {at::stack(unstacked_output.outputs, 0),
unstacked_output.final_hidden};
}
auto unstacked_output = (*this)(inputs.unbind(0), input_hidden, params);
return {at::stack(unstacked_output.outputs, 0),
unstacked_output.final_hidden};
}
Cell<hidden_type, cell_params>& cell_;
};
template <typename dir_hidden_type, typename cell_params>
struct FullBidirectionalLayer
: Layer<Tensor, pair_of<dir_hidden_type>, pair_of<cell_params>> {
using hidden_type = pair_of<dir_hidden_type>;
using param_type = pair_of<cell_params>;
using output_type = typename Layer<Tensor, hidden_type, param_type>::output_type;
FullBidirectionalLayer(Cell<dir_hidden_type, cell_params>& cell)
: layer_(cell) {};
output_type operator()(
const Tensor& input,
const hidden_type& input_hidden,
const param_type& params) const override {
std::vector<Tensor> step_inputs;
if (input.device().is_cpu()) {
auto input_w = params.first.linear_ih(input);
step_inputs = input_w.unbind(0);
auto fw_result = layer_(
step_inputs, input_hidden.first, params.first, true);
auto fw_output = at::stack(fw_result.outputs, 0);
input_w = params.second.linear_ih(input);
step_inputs = input_w.unbind(0);
auto rev_step_inputs = reverse(std::move(step_inputs));
auto rev_result =
layer_(rev_step_inputs, input_hidden.second, params.second, true);
std::reverse(rev_result.outputs.begin(), rev_result.outputs.end());
auto rev_output = at::stack(rev_result.outputs, 0);
return {at::cat({fw_output, rev_output}, fw_output.dim() - 1),
std::make_pair(fw_result.final_hidden, rev_result.final_hidden)};
}
step_inputs = input.unbind(0);
auto fw_result = layer_(step_inputs, input_hidden.first, params.first);
auto fw_output = at::stack(fw_result.outputs, 0);
auto rev_step_inputs = reverse(std::move(step_inputs));
auto rev_result =
layer_(rev_step_inputs, input_hidden.second, params.second);
std::reverse(rev_result.outputs.begin(), rev_result.outputs.end());
auto rev_output = at::stack(rev_result.outputs, 0);
return {at::cat({fw_output, rev_output}, fw_output.dim() - 1),
std::make_pair(fw_result.final_hidden, rev_result.final_hidden)};
}
std::vector<Tensor> reverse(std::vector<Tensor>&& x) const {
std::reverse(x.begin(), x.end());
return std::move(x);
}
FullLayer<dir_hidden_type, cell_params> layer_;
};
template<typename hidden_type, typename cell_params>
struct PackedLayer : Layer<PackedSequence, hidden_type, cell_params> {
using output_type =
typename Layer<PackedSequence, hidden_type, cell_params>::output_type;
PackedLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
output_type operator()(
const PackedSequence& input,
const hidden_type& input_hidden,
const cell_params& params) const override {
std::vector<at::Tensor> step_outputs;
std::vector<hidden_type> hiddens;
int64_t input_offset = 0;
int64_t num_steps = input.batch_sizes.size(0);
int64_t* batch_sizes = input.batch_sizes.data_ptr<int64_t>();
int64_t last_batch_size = batch_sizes[0];
const Tensor* input_ptr = &input.data;
bool pre_compute_input = false;
Tensor input_w;
if (input.data.device().is_cpu()) {
input_w = params.linear_ih(input.data);
input_ptr = &input_w;
pre_compute_input = true;
}
// Batch sizes is a sequence of decreasing lengths, which are offsets
// into a 1D list of inputs. At every step we slice out batch_size elements,
// and possibly account for the decrease in the batch size since the last step,
// which requires us to slice the hidden state (since some sequences
// are completed now). The sliced parts are also saved, because we will need
// to return a tensor of final hidden state.
auto hidden = input_hidden;
for (int64_t i = 0; i < num_steps; ++i) {
const int64_t batch_size = batch_sizes[i];
auto step_input = input_ptr->narrow(0, input_offset, batch_size);
input_offset += batch_size;
const int64_t dec = last_batch_size - batch_size;
if (dec > 0) {
hiddens.emplace_back(
hidden_slice(hidden, last_batch_size - dec, last_batch_size));
hidden = hidden_slice(hidden, 0, last_batch_size - dec);
}
last_batch_size = batch_size;
hidden = cell_(step_input, hidden, params, pre_compute_input);
step_outputs.push_back(hidden_as_output(hidden));
}
hiddens.emplace_back(hidden);
std::reverse(hiddens.begin(), hiddens.end());
return {PackedSequence{at::cat(step_outputs, 0), input.batch_sizes},
hidden_concat(hiddens)};
}
Cell<hidden_type, cell_params>& cell_;
};
template<typename hidden_type, typename cell_params>
struct ReversedPackedLayer : Layer<PackedSequence, hidden_type, cell_params> {
using output_type =
typename Layer<PackedSequence, hidden_type, cell_params>::output_type;
ReversedPackedLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
output_type operator()(
const PackedSequence& input,
const hidden_type& input_hidden,
const cell_params& params) const override {
std::vector<at::Tensor> step_outputs;
int64_t input_offset = input.data.size(0);
int64_t num_steps = input.batch_sizes.size(0);
int64_t* batch_sizes = input.batch_sizes.data_ptr<int64_t>();
int64_t last_batch_size = batch_sizes[num_steps - 1];
const Tensor* input_ptr = &input.data;
bool pre_compute_input = false;
Tensor input_w;
if (input.data.device().is_cpu()) {
input_w = params.linear_ih(input.data);
input_ptr = &input_w;
pre_compute_input = true;
}
// Here the situation is similar to that above, except we start out with
// the smallest batch size (and a small set of hidden states we actually use),
// and progressively expand the hidden states, as we move backwards over the
// 1D list of inputs.
auto hidden = hidden_slice(input_hidden, 0, batch_sizes[num_steps - 1]);
for (int64_t i = num_steps - 1; i >= 0; --i) {
const int64_t batch_size = batch_sizes[i];
const int64_t inc = batch_size - last_batch_size;
if (inc > 0) {
hidden = hidden_concat(ArrayRef<hidden_type>{
hidden, hidden_slice(input_hidden, last_batch_size, batch_size)});
}
auto step_input =
input_ptr->narrow(0, input_offset - batch_size, batch_size);
input_offset -= batch_size;
last_batch_size = batch_size;
hidden = cell_(step_input, hidden, params, pre_compute_input);
step_outputs.emplace_back(hidden_as_output(hidden));
}
std::reverse(step_outputs.begin(), step_outputs.end());
return {PackedSequence{at::cat(step_outputs, 0), input.batch_sizes},
hidden};
}
Cell<hidden_type, cell_params>& cell_;
};
template <typename dir_hidden_type, typename cell_params>
struct PackedBidirectionalLayer
: Layer<PackedSequence, pair_of<dir_hidden_type>, pair_of<cell_params>> {
using hidden_type = pair_of<dir_hidden_type>;
using param_type = pair_of<cell_params>;
using output_type =
typename Layer<PackedSequence, hidden_type, param_type>::output_type;
PackedBidirectionalLayer(Cell<dir_hidden_type, cell_params>& cell)
: layer_(cell), rev_layer_(cell) {};
output_type operator()(
const PackedSequence& input,
const hidden_type& input_hidden,
const param_type& params) const override {
auto fw_result = layer_(input, input_hidden.first, params.first);
auto rev_result = rev_layer_(input, input_hidden.second, params.second);
PackedSequence output{
at::cat({fw_result.outputs.data, rev_result.outputs.data}, -1),
input.batch_sizes};
return {output,
std::make_pair(fw_result.final_hidden, rev_result.final_hidden)};
}
PackedLayer<dir_hidden_type, cell_params> layer_;
ReversedPackedLayer<dir_hidden_type, cell_params> rev_layer_;
};
////////////////////////////////////////////////////////////////////////////////
// apply_layer_stack
//
// layers are convenient, but in reality we often want to stack them. this little
// helper manages slicing of all inputs and parameters, and repeatedly feeds them
// into the given layer. returns the last layer's outputs, and a vector of final
// hidden states produced at each level.
Tensor dropout(const Tensor& input, double p) {
return at::dropout(input, p, /*train=*/true);
}
PackedSequence dropout(const PackedSequence& input, double p) {
return {at::dropout(input.data, p, /*train=*/true), input.batch_sizes};
}
template<typename io_type, typename hidden_type, typename weight_type>
LayerOutput<io_type, std::vector<hidden_type>>
apply_layer_stack(const Layer<io_type, hidden_type, weight_type>& layer, const io_type& input,
const std::vector<hidden_type>& hiddens, const std::vector<weight_type>& weights,
int64_t num_layers, double dropout_p, bool train) {
TORCH_CHECK(num_layers == (int64_t)hiddens.size(), "Expected more hidden states in stacked_rnn");
TORCH_CHECK(num_layers == (int64_t)weights.size(), "Expected more weights in stacked_rnn");
auto layer_input = input;
auto hidden_it = hiddens.begin();
auto weight_it = weights.begin();
std::vector<hidden_type> final_hiddens;
for (int64_t l = 0; l < num_layers; ++l) {
auto layer_output = layer(layer_input, *(hidden_it++), *(weight_it++));
final_hiddens.push_back(layer_output.final_hidden);
layer_input = layer_output.outputs;
if (dropout_p != 0 && train && l < num_layers - 1) {
layer_input = dropout(layer_input, dropout_p);
}
}
return {layer_input, final_hiddens};
}
////////////////////////////////////////////////////////////////////////////////
// HELPERS SIMPLIFYING DISPATCH TO FUNCTIONS ABOVE
////////////////////////////////////////////////////////////////////////////////
template<typename CellType, template<typename,typename> class LayerT, template<typename,typename> class BidirLayerT, typename cell_params, typename io_type>
LayerOutput<io_type, std::vector<typename CellType::hidden_type>> _rnn_impl(
const io_type& input,
const std::vector<cell_params>& params,
const std::vector<typename CellType::hidden_type>& hiddens,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
using hidden_type = typename CellType::hidden_type;
CellType cell;
if (bidirectional) {
using BidirLayer = BidirLayerT<hidden_type, cell_params>;
auto bidir_result = apply_layer_stack(BidirLayer{cell}, input, pair_vec(hiddens), pair_vec(params), num_layers, dropout_p, train);
return {bidir_result.outputs, unpair_vec(std::move(bidir_result.final_hidden))};
} else {
return apply_layer_stack(LayerT<hidden_type,cell_params>{cell}, input, hiddens, params, num_layers, dropout_p, train);
}
}
template<typename CellType, template<typename,typename> class LayerT, template<typename,typename> class BidirLayerT, typename cell_params, typename io_type>
std::tuple<io_type, Tensor> _rnn_impl_with_concat(
const io_type& input,
const std::vector<cell_params>& params,
const std::vector<typename CellType::hidden_type>& hiddens,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
auto result = _rnn_impl<CellType, LayerT, BidirLayerT>(input, params, hiddens, num_layers, dropout_p, train, bidirectional);
return std::make_tuple(std::move(result.outputs), at::stack(result.final_hidden, 0));
}
template<template<typename,typename> class LayerT, template<typename,typename> class BidirLayerT, typename cell_params, typename io_type>
std::tuple<io_type, Tensor, Tensor> _lstm_impl(
const io_type& input,
const std::vector<cell_params>& params, const Tensor& hx, const Tensor& cx,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
// It's much more useful for us to work on lists of pairs of hx and cx for each layer, so we need
// to transpose a pair of those tensors.
auto layer_hx = hx.unbind(0);
auto layer_cx = cx.unbind(0);
int64_t total_layers = layer_hx.size();
std::vector<typename LSTMCell<cell_params>::hidden_type> hiddens;
hiddens.reserve(total_layers);
for (int64_t i = 0; i < total_layers; ++i) {
hiddens.emplace_back(std::move(layer_hx[i]), std::move(layer_cx[i]));
}
auto result = _rnn_impl<LSTMCell<cell_params>, LayerT, BidirLayerT>(input, params, hiddens, num_layers, dropout_p, train, bidirectional);
// Now, we need to reverse the transposed we performed above.
std::vector<Tensor> hy, cy;
hy.reserve(total_layers); cy.reserve(total_layers);
for (auto & hidden : result.final_hidden) {
hy.push_back(std::move(std::get<0>(hidden)));
cy.push_back(std::move(std::get<1>(hidden)));
}
return std::make_tuple(std::move(result.outputs), at::stack(hy, 0), at::stack(cy, 0));
}
} // anonymous namespace
bool _use_cudnn_rnn_flatten_weight() {
return detail::getCUDAHooks().compiledWithCuDNN();
}
////////////////////////////////////////////////////////////////////////////////
// PUBLIC FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
#define ONE_HIDDEN_RNN(NAME, CELL) \
DEFINE_DISPATCH(NAME##_cudnn_stub); \
DEFINE_DISPATCH(NAME##_miopen_stub); \
DEFINE_DISPATCH(NAME##_packed_cudnn_stub); \
DEFINE_DISPATCH(NAME##_packed_miopen_stub); \
REGISTER_NO_CPU_DISPATCH(NAME##_cudnn_stub, rnn_fn); \
REGISTER_NO_CPU_DISPATCH(NAME##_miopen_stub, rnn_fn); \
REGISTER_NO_CPU_DISPATCH(NAME##_packed_cudnn_stub, rnn_packed_fn); \
REGISTER_NO_CPU_DISPATCH(NAME##_packed_miopen_stub, rnn_packed_fn); \
\
std::tuple<Tensor, Tensor> NAME( \
const Tensor& _input, \
const Tensor& hx, \
TensorList _params, \
bool has_biases, \
int64_t num_layers, \
double dropout_p, \
bool train, \
bool bidirectional, \
bool batch_first) { \
if (at::cudnn_is_acceptable(_input)) { \
Tensor output, hy; \
NAME##_cudnn_stub( \
_input.device().type(), \
output, \
hy, \
_input, \
hx, \
_params, \
has_biases, \
num_layers, \
dropout_p, \
train, \
bidirectional, \
batch_first); \
return std::make_tuple(std::move(output), std::move(hy)); \
} \
if (use_miopen(_input, dropout_p)) { \
Tensor output, hy; \
NAME##_miopen_stub( \
_input.device().type(), \
output, \
hy, \
_input, \
hx, \
_params, \
has_biases, \
num_layers, \
dropout_p, \
train, \
bidirectional, \
batch_first); \
return std::make_tuple(std::move(output), std::move(hy)); \
} \
check_attributes(_input, _params, hx); \
auto input = batch_first ? _input.transpose(0, 1) : _input; \
auto params = gather_params(_params, has_biases); \
auto results = \
_rnn_impl_with_concat<CELL, FullLayer, FullBidirectionalLayer>( \
input, \
params, \
hx.unbind(0), \
num_layers, \
dropout_p, \
train, \
bidirectional); \
if (batch_first) { \
std::get<0>(results).transpose_(0, 1); \
} \
return results; \
} \
\
std::tuple<Tensor, Tensor> NAME( \
const Tensor& data, \
const Tensor& batch_sizes, \
const Tensor& hx, \
TensorList _params, \
bool has_biases, \
int64_t num_layers, \
double dropout_p, \
bool train, \
bool bidirectional) { \
if (at::cudnn_is_acceptable(data)) { \
Tensor output, hy; \
NAME##_packed_cudnn_stub( \
data.device().type(), \
output, \
hy, \
data, \
batch_sizes, \
hx, \
_params, \
has_biases, \
num_layers, \
dropout_p, \
train, \
bidirectional); \
return std::make_tuple(std::move(output), std::move(hy)); \
} \
if (use_miopen(data, dropout_p)) { \
Tensor output, hy; \
NAME##_packed_miopen_stub( \
data.device().type(), \
output, \
hy, \
data, \
batch_sizes, \
hx, \
_params, \
has_biases, \
num_layers, \
dropout_p, \
train, \
bidirectional); \
return std::make_tuple(std::move(output), std::move(hy)); \
} \
PackedSequence input{data, batch_sizes}; \
auto params = gather_params(_params, has_biases); \
auto result = \
_rnn_impl_with_concat<CELL, PackedLayer, PackedBidirectionalLayer>( \
input, \
params, \
hx.unbind(0), \
num_layers, \
dropout_p, \
train, \
bidirectional); \
auto& packed_output = std::get<0>(result); \
return std::make_tuple( \
std::move(packed_output.data), std::move(std::get<1>(result))); \
}
#define ONE_HIDDEN_QRNN(NAME, CELL) \
std::tuple<Tensor, Tensor> NAME##_input( \
const Tensor& _input, \
const Tensor& hx, \
c10::List<c10::intrusive_ptr<CellParamsBase>> _params, \
bool has_biases, \
int64_t num_layers, \
double dropout_p, \
bool train, \
bool bidirectional, \
bool batch_first) { \
std::vector<QRNNCellParamsWrapper> params; \
for (c10::intrusive_ptr<CellParamsBase> x : _params) { \
params.emplace_back(std::move(x)); \
} \
auto input = batch_first ? _input.transpose(0, 1) : _input; \
auto results = \
_rnn_impl_with_concat<CELL, FullLayer, FullBidirectionalLayer>( \
input, \
params, \
hx.unbind(0), \
num_layers, \
dropout_p, \
train, \
bidirectional); \
if (batch_first) { \
std::get<0>(results).transpose_(0, 1); \
} \
return results; \
} \
\
std::tuple<Tensor, Tensor> NAME##_data( \
const Tensor& data, \
const Tensor& batch_sizes, \
const Tensor& hx, \
c10::List<c10::intrusive_ptr<CellParamsBase>> _params, \
bool has_biases, \
int64_t num_layers, \
double dropout_p, \
bool train, \
bool bidirectional) { \
std::vector<QRNNCellParamsWrapper> params; \
for (c10::intrusive_ptr<CellParamsBase> x : _params) { \
params.emplace_back(std::move(x)); \
} \
PackedSequence input{data, batch_sizes}; \
auto result = \
_rnn_impl_with_concat<CELL, PackedLayer, PackedBidirectionalLayer>( \
input, \
params, \
hx.unbind(0), \
num_layers, \
dropout_p, \
train, \
bidirectional); \
auto& packed_output = std::get<0>(result); \
return std::make_tuple( \
std::move(packed_output.data), std::move(std::get<1>(result))); \
}
ONE_HIDDEN_RNN(gru, GRUCell<CellParams>)
ONE_HIDDEN_QRNN(quantized_gru, GRUCell<QRNNCellParamsWrapper>)
// BC wrappers for quantized_gru
std::tuple<Tensor, Tensor> quantized_gru_input_legacy(
const Tensor& _input,
const Tensor& hx,
c10::List<at::Tensor> _params,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional,
bool batch_first) {
TORCH_WARN_ONCE(
"torch.quantized_gru with List[Tensor] for parameters is "
"deprecated and may be removed! Please re-export your model "
"using the newer definitions in torch.jit.quantized");
auto params = gather_quantized_params(std::move(_params));
return quantized_gru_input(
_input,
hx,
std::move(params),
has_biases,
num_layers,
dropout_p,
train,
bidirectional,
batch_first);
}
std::tuple<Tensor, Tensor> quantized_gru_data_legacy(
const Tensor& data,
const Tensor& batch_sizes,
const Tensor& hx,
c10::List<at::Tensor> _params,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional) {
TORCH_WARN_ONCE(
"torch.quantized_gru with List[Tensor] for parameters is "
"deprecated and may be removed! Please re-export your model "
"using the newer definitions in torch.jit.quantized");
auto params = gather_quantized_params(std::move(_params));
return quantized_gru_data(
data,
batch_sizes,
hx,
std::move(params),
has_biases,
num_layers,
dropout_p,
train,
bidirectional);
}
using tanf_cell_type = SimpleCell<tanh_f, CellParams>;
ONE_HIDDEN_RNN(rnn_tanh, tanf_cell_type)
using relu_cell_type = SimpleCell<relu_f, CellParams>;
ONE_HIDDEN_RNN(rnn_relu, relu_cell_type);
DEFINE_DISPATCH(lstm_cudnn_stub);
DEFINE_DISPATCH(lstm_packed_cudnn_stub);
DEFINE_DISPATCH(lstm_miopen_stub);
DEFINE_DISPATCH(lstm_packed_miopen_stub);
REGISTER_NO_CPU_DISPATCH(lstm_cudnn_stub, lstm_fn);
REGISTER_NO_CPU_DISPATCH(lstm_packed_cudnn_stub, lstm_packed_fn);
REGISTER_NO_CPU_DISPATCH(lstm_miopen_stub, lstm_fn);
REGISTER_NO_CPU_DISPATCH(lstm_packed_miopen_stub, lstm_packed_fn);
std::tuple<Tensor, Tensor, Tensor> lstm(
const Tensor& _input, TensorList hx,
TensorList _params, bool has_biases,
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) {
TORCH_CHECK(hx.size() == 2, "lstm expects two hidden states");
if (at::cudnn_is_acceptable(_input)) {
Tensor output, hy, cy;
lstm_cudnn_stub(_input.device().type(), output, hy, cy, _input, hx, _params, has_biases,
num_layers, dropout_p, train, bidirectional, batch_first);
return std::make_tuple(std::move(output), std::move(hy), std::move(cy));
}
// if cells are of different size, that means projections are used
bool has_projections = (hx[0].size(2) != hx[1].size(2));
if (use_miopen(_input, dropout_p)) {
if (!has_projections) {
Tensor output, hy, cy;
lstm_miopen_stub(_input.device().type(), output, hy, cy, _input, hx, _params, has_biases,
num_layers, dropout_p, train, bidirectional, batch_first);
return std::make_tuple(std::move(output), std::move(hy), std::move(cy));
} else {
TORCH_WARN_ONCE(
"LSTM with projections is not supported with MIOpen. Using default implementation.");
}
}
check_attributes(_input, _params, hx);
auto input = batch_first ? _input.transpose(0, 1) : _input;
auto params = gather_params(_params, has_biases, has_projections);
auto results = _lstm_impl<FullLayer, FullBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers, dropout_p, train, bidirectional);
if (batch_first) {
std::get<0>(results) = std::get<0>(results).transpose(0, 1);
}
return results;
}
std::tuple<Tensor, Tensor, Tensor> lstm(
const Tensor& data, const Tensor& batch_sizes, TensorList hx,
TensorList _params, bool has_biases,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
TORCH_CHECK(hx.size() == 2, "lstm expects two hidden states");
if (at::cudnn_is_acceptable(data)) {
Tensor output, hy, cy;
lstm_packed_cudnn_stub(data.device().type(), output, hy, cy, data, batch_sizes, hx,
_params, has_biases, num_layers, dropout_p, train, bidirectional);
return std::make_tuple(std::move(output), std::move(hy), std::move(cy));
}
// if cells are of different size, that means projections are used
bool has_projections = (hx[0].size(2) != hx[1].size(2));
if (use_miopen(data, dropout_p)) {
if (!has_projections) {
Tensor output, hy, cy;
lstm_packed_miopen_stub(data.device().type(), output, hy, cy, data, batch_sizes, hx,
_params, has_biases, num_layers, dropout_p, train, bidirectional);
return std::make_tuple(std::move(output), std::move(hy), std::move(cy));
} else {
TORCH_WARN_ONCE(
"LSTM with projections is not supported with MIOpen. Using default implementation.");
}
}
PackedSequence input { data, batch_sizes };
auto params = gather_params(_params, has_biases, has_projections);
auto result = _lstm_impl<PackedLayer, PackedBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers, dropout_p, train, bidirectional);
auto & packed_output = std::get<0>(result);
return std::make_tuple(std::move(packed_output.data),
std::move(std::get<1>(result)),
std::move(std::get<2>(result)));
}
std::tuple<Tensor, Tensor> lstm_cell(
const Tensor& input, TensorList hx,
const Tensor& w_ih, const Tensor& w_hh, const c10::optional<Tensor>& b_ih_opt, const c10::optional<Tensor>& b_hh_opt) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> b_ih_maybe_owned = at::borrow_from_optional_tensor(b_ih_opt);
const Tensor& b_ih = *b_ih_maybe_owned;
const Tensor& b_hh = c10::value_or_else(b_hh_opt, [] {return Tensor();});
TORCH_CHECK(hx.size() == 2, "lstm_cell expects two hidden states");
check_rnn_cell_forward_input(input, w_ih.size(1));
auto hidden_size = w_hh.size(1);
check_rnn_cell_forward_hidden(input, hx[0], hidden_size, 0);
check_rnn_cell_forward_hidden(input, hx[1], hidden_size, 0);
static at::Tensor undefined;
return LSTMCell<CellParams>{}(input, std::make_tuple(hx[0], hx[1]), CellParams{w_ih, w_hh, b_ih, b_hh, undefined});
}
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor>
_thnn_differentiable_lstm_cell_backward( const c10::optional<Tensor>& grad_hy_opt, const c10::optional<Tensor>& grad_cy_opt,
const Tensor& input_gates,
const Tensor& hidden_gates, const c10::optional<Tensor>& input_bias_opt, const c10::optional<Tensor>& hidden_bias_opt,
const Tensor& cx,
const Tensor& cy) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> grad_hy_maybe_owned = at::borrow_from_optional_tensor(grad_hy_opt);
const Tensor& grad_hy = *grad_hy_maybe_owned;
const Tensor& grad_cy = c10::value_or_else(grad_cy_opt, [] {return Tensor();});
const Tensor& input_bias = c10::value_or_else(input_bias_opt, [] {return Tensor();});
const Tensor& hidden_bias = c10::value_or_else(hidden_bias_opt, [] {return Tensor();});
if (!grad_hy.defined() && !grad_cy.defined()) {
return std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor>();
}
Tensor gates = input_gates + hidden_gates;
if (input_bias.defined()) {
gates = gates + input_bias;
}
if (hidden_bias.defined()) {
gates = gates + hidden_bias;
}
auto chunked_gates = gates.unsafe_chunk(4, 1);
Tensor i = chunked_gates[0].sigmoid();
Tensor f = chunked_gates[1].sigmoid();
Tensor c = chunked_gates[2].tanh();
Tensor o = chunked_gates[3].sigmoid();
Tensor gcx = cy.tanh();
Tensor gog;
TORCH_INTERNAL_ASSERT((grad_hy.defined() || grad_cy.defined()),"either gradient with respect to hy or cy should be defined");
if (grad_hy.defined()) {
gog = grad_hy * gcx;
gog = at::sigmoid_backward(gog, o);
gcx = at::tanh_backward(grad_hy * o, gcx);
if (grad_cy.defined()) {
gcx = gcx + grad_cy;
}
} else if (grad_cy.defined()) {
gog = at::zeros_like(cx, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
gcx = grad_cy;
}
Tensor gig = gcx * c;
Tensor gfg = gcx * cx;
Tensor gcg = gcx * i;
gcx = gcx * f;
gig = at::sigmoid_backward(gig, i);
gfg = at::sigmoid_backward(gfg, f);
gcg = at::tanh_backward(gcg, c);
Tensor grad_gates = at::cat({gig, gfg, gcg, gog}, 1);
Tensor grad_bias = input_bias.defined() ? grad_gates.sum(0, /*keepdim=*/false) : at::Tensor{};
return std::make_tuple(grad_gates, grad_gates, std::move(gcx), grad_bias, grad_bias);
}
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> _thnn_differentiable_gru_cell_backward(
const Tensor& grad_hy,
const Tensor& input_gates,
const Tensor& hidden_gates,
const Tensor& hx, const c10::optional<Tensor>& input_bias_opt, const c10::optional<Tensor>& hidden_bias_opt){
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> input_bias_maybe_owned = at::borrow_from_optional_tensor(input_bias_opt);
const Tensor& input_bias = *input_bias_maybe_owned;
const Tensor& hidden_bias = c10::value_or_else(hidden_bias_opt, [] {return Tensor();});
Tensor in_g = input_gates;
Tensor h_g = hidden_gates;
if (input_bias.defined()){
in_g = in_g+input_bias;
}
if (hidden_bias.defined()){
h_g = h_g + hidden_bias;
}
auto chunked_input_gates = in_g.unsafe_chunk(3, 1);
Tensor ir = chunked_input_gates[0];
Tensor ii = chunked_input_gates[1];
Tensor in = chunked_input_gates[2];
auto chunked_hidden_gates = h_g.unsafe_chunk(3, 1);
Tensor hr = chunked_hidden_gates[0];
Tensor hi = chunked_hidden_gates[1];
Tensor hn = chunked_hidden_gates[2];
Tensor rg = (ir + hr).sigmoid();
Tensor ig = (ii + hi).sigmoid();
Tensor grad_hx = grad_hy * ig;
Tensor ng = (in+rg*hn).tanh();
Tensor gig = at::sigmoid_backward(grad_hy * (hx - ng), ig);
Tensor gin = at::tanh_backward(grad_hy * (1 - ig), ng);
Tensor ghn = gin * rg;
Tensor grg = at::sigmoid_backward(gin * hn, rg);
Tensor grad_input_gates = at::cat({grg,gig,gin}, 1);
Tensor grad_hidden_gates = at::cat({grg,gig,ghn}, 1);
Tensor grad_input_bias = input_bias.defined() ? grad_input_gates.sum(0, /*keepdim=*/false) : at::Tensor{};
Tensor grad_hidden_bias = input_bias.defined() ? grad_hidden_gates.sum(0, /*keepdim=*/false) : at::Tensor{};
return std::make_tuple(std::move(grad_input_gates), std::move(grad_hidden_gates),
std::move(grad_hx), std::move(grad_input_bias), std::move(grad_hidden_bias));
}
Tensor gru_cell(
const Tensor& input, const Tensor& hx,
const Tensor& w_ih, const Tensor& w_hh, const c10::optional<Tensor>& b_ih_opt, const c10::optional<Tensor>& b_hh_opt) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> b_ih_maybe_owned = at::borrow_from_optional_tensor(b_ih_opt);
const Tensor& b_ih = *b_ih_maybe_owned;
const Tensor& b_hh = c10::value_or_else(b_hh_opt, [] {return Tensor();});
check_rnn_cell_forward_input(input, w_ih.size(1));
check_rnn_cell_forward_hidden(input, hx, w_hh.size(1), 0);
static at::Tensor undefined;
return GRUCell<CellParams>{}(input, hx, CellParams{w_ih, w_hh, b_ih, b_hh, undefined});
}
Tensor rnn_tanh_cell(
const Tensor& input, const Tensor& hx,
const Tensor& w_ih, const Tensor& w_hh, const c10::optional<Tensor>& b_ih_opt, const c10::optional<Tensor>& b_hh_opt) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> b_ih_maybe_owned = at::borrow_from_optional_tensor(b_ih_opt);
const Tensor& b_ih = *b_ih_maybe_owned;
const Tensor& b_hh = c10::value_or_else(b_hh_opt, [] {return Tensor();});
static at::Tensor undefined;
check_rnn_cell_forward_input(input, w_ih.size(1));
check_rnn_cell_forward_hidden(input, hx, w_hh.size(1), 0);
return SimpleCell<tanh_f, CellParams>{}(input, hx, CellParams{w_ih, w_hh, b_ih, b_hh, undefined});
}
Tensor rnn_relu_cell(
const Tensor& input, const Tensor& hx,
const Tensor& w_ih, const Tensor& w_hh, const c10::optional<Tensor>& b_ih_opt, const c10::optional<Tensor>& b_hh_opt) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> b_ih_maybe_owned = at::borrow_from_optional_tensor(b_ih_opt);
const Tensor& b_ih = *b_ih_maybe_owned;
const Tensor& b_hh = c10::value_or_else(b_hh_opt, [] {return Tensor();});
static at::Tensor undefined;
check_rnn_cell_forward_input(input, w_ih.size(1));
check_rnn_cell_forward_hidden(input, hx, w_hh.size(1), 0);
return SimpleCell<relu_f, CellParams>{}(input, hx, CellParams{w_ih, w_hh, b_ih, b_hh, undefined});
}
// Quantized implementations
//
// These implementations use FBGEMM to do the i2h and h2h linear layers with
// an int8 or float16 quantized weight. This is advantageous in small-batch-size
// scenarios where runtime is dominated by memory fetches of the weight matrix.
std::tuple<Tensor, Tensor, Tensor> quantized_lstm_input(
const Tensor& _input,
c10::List<at::Tensor> hx_,
c10::List<c10::intrusive_ptr<CellParamsBase>> _params_,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional,
bool batch_first,
c10::optional<ScalarType> dtype,
bool use_dynamic) {
auto hx = hx_.vec();
std::vector<QRNNCellParamsWrapper> params;
params.reserve(_params_.size());
for (const auto& param : _params_) {
params.emplace_back(static_cast<c10::intrusive_ptr<CellParamsBase>>(param));
}
TORCH_CHECK(hx.size() == 2, "lstm expects two hidden states");
TORCH_CHECK(hx[0].size(2) == hx[1].size(2), "quantized LSTM with projections is not supported");
auto result_dtype = dtype.has_value() ? dtype.value() : at::kChar;
auto input = batch_first ? _input.transpose(0, 1) : _input;
TORCH_CHECK(has_biases, "quantized LSTM requires biases");
TORCH_CHECK(
result_dtype == at::kChar || result_dtype == at::kQInt8 ||
result_dtype == at::kHalf,
"dtype is not supported");
std::tuple<Tensor, Tensor, Tensor> results;
if (result_dtype == at::kChar || result_dtype == at::kQInt8) {
if (use_dynamic) {
results = _lstm_impl<FullLayer, FullBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
} else {
results = _lstm_impl<FullLayer, FullBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
}
} else {
results = _lstm_impl<FullLayer, FullBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
}
if (batch_first) {
std::get<0>(results) = std::get<0>(results).transpose(0, 1);
}
return results;
}
// BC wrappers for quantized_lstm
std::tuple<Tensor, Tensor, Tensor> quantized_lstm_input_legacy(
const Tensor& _input,
c10::List<at::Tensor> hx_,
c10::List<at::Tensor> _params_,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional,
bool batch_first,
c10::optional<ScalarType> dtype,
bool use_dynamic) {
TORCH_WARN_ONCE(
"torch.quantized_lstm with List[Tensor] for parameters is "
"deprecated and may be removed! Please re-export your model "
"using the newer definitions in torch.jit.quantized");
c10::List<c10::intrusive_ptr<CellParamsBase>> params;
auto result_dtype = dtype.has_value() ? dtype.value() : at::kChar;
if (result_dtype == at::kChar || result_dtype == at::kQInt8) {
if (use_dynamic) {
params = gather_quantized_params_dynamic(std::move(_params_));
} else {
params = gather_quantized_params(std::move(_params_));
}
} else {
params = gather_quantized_params_fp16(std::move(_params_));
}
return quantized_lstm_input(
_input,
std::move(hx_),
std::move(params),
has_biases,
num_layers,
dropout_p,
train,
bidirectional,
batch_first,
std::move(dtype),
use_dynamic);
}
std::tuple<Tensor, Tensor, Tensor> quantized_lstm_data(
const Tensor& data,
const Tensor& batch_sizes,
c10::List<at::Tensor> hx_,
c10::List<c10::intrusive_ptr<CellParamsBase>> _params_,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional,
c10::optional<ScalarType> dtype,
bool use_dynamic) {
auto hx = hx_.vec();
std::vector<QRNNCellParamsWrapper> params;
params.reserve(_params_.size());
for (const auto& param : _params_) {
params.emplace_back(static_cast<c10::intrusive_ptr<CellParamsBase>>(param));
}
TORCH_CHECK(hx.size() == 2, "lstm expects two hidden states");
TORCH_CHECK(hx[0].size(2) == hx[1].size(2), "quantized LSTM with projections is not supported");
auto result_dtype = dtype.has_value() ? dtype.value() : at::kChar;
PackedSequence input { data, batch_sizes };
std::tuple<PackedSequence, Tensor, Tensor> results;
if (result_dtype == at::kChar || result_dtype == at::kQInt8) {
if (use_dynamic) {
results = _lstm_impl<PackedLayer, PackedBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
} else {
results = _lstm_impl<PackedLayer, PackedBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
}
} else {
results = _lstm_impl<PackedLayer, PackedBidirectionalLayer>(
input, params, hx[0], hx[1], num_layers,
dropout_p, train, bidirectional);
}
auto & packed_output = std::get<0>(results);
return std::make_tuple(std::move(packed_output.data),
std::move(std::get<1>(results)),
std::move(std::get<2>(results)));
}
std::tuple<Tensor, Tensor, Tensor> quantized_lstm_data_legacy(
const Tensor& data,
const Tensor& batch_sizes,
c10::List<at::Tensor> hx_,
c10::List<at::Tensor> _params_,
bool has_biases,
int64_t num_layers,
double dropout_p,
bool train,
bool bidirectional,
c10::optional<ScalarType> dtype,
bool use_dynamic) {
TORCH_WARN_ONCE(
"torch.quantized_lstm with List[Tensor] for parameters is "
"deprecated and may be removed! Please re-export your model "
"using the newer definitions in torch.jit.quantized");
c10::List<c10::intrusive_ptr<CellParamsBase>> params;
auto result_dtype = dtype.has_value() ? dtype.value() : at::kChar;
if (result_dtype == at::kChar || result_dtype == at::kQInt8) {
if (use_dynamic) {
params = gather_quantized_params_dynamic(std::move(_params_));
} else {
params = gather_quantized_params(std::move(_params_));
}
} else {
params = gather_quantized_params_fp16(std::move(_params_));
}
return quantized_lstm_data(
data,
batch_sizes,
std::move(hx_),
std::move(params),
has_biases,
num_layers,
dropout_p,
train,
bidirectional,
std::move(dtype),
use_dynamic);
}
#define DEFINE_QUANTIZED_RNN_CELL(name, hx_type, cell_type, return_type, prepare_hx_fn) \
return_type name( \
const Tensor& input, \
hx_type hx, \
const Tensor& w_ih, \
const Tensor& w_hh, \
const Tensor& b_ih, \
const Tensor& b_hh, \
const Tensor& packed_ih, \
const Tensor& packed_hh, \
const Tensor& col_offsets_ih, \
const Tensor& col_offsets_hh, \
const Scalar& scale_ih, \
const Scalar& scale_hh, \
const Scalar& zero_point_ih, \
const Scalar& zero_point_hh) { \
QuantizedCellParams params( \
w_ih, \
w_hh, \
b_ih, \
b_hh, \
packed_ih, \
packed_hh, \
col_offsets_ih, \
col_offsets_hh, \
scale_ih, \
scale_hh, \
zero_point_ih, \
zero_point_hh); \
return cell_type{}( \
input, prepare_hx_fn(hx), params); \
}
// Set reduced range to be True for all RNN Cells by default. This flag is used only for FBGEMM kernels
// QNNPACK does not reduce range for activations
#define DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(name, hx_type, cell_type, return_type, prepare_hx_fn) \
return_type name( \
const Tensor& input, \
hx_type hx, \
c10::intrusive_ptr<LinearPackedParamsBase> _packed_w_ih, \
c10::intrusive_ptr<LinearPackedParamsBase> _packed_w_hh, \
const Tensor& b_ih, \
const Tensor& b_hh \
) { \
QuantizedCellParamsDynamic params( \
_packed_w_ih, \
_packed_w_hh, \
b_ih, \
b_hh,\
true); \
return cell_type{}( \
input, prepare_hx_fn(hx), params); \
}
// Quantized LSTM cell
using quantized_lstm_cell_type = LSTMCell<QuantizedCellParams>;
using quantized_lstm_return_type = std::tuple<Tensor, Tensor>;
std::tuple<Tensor, Tensor> prepare_quantized_lstm_hx(TensorList hx) {
return std::make_tuple(hx[0], hx[1]);
}
// Quantized LSTM cell
using quantized_lstm_cell_dynamic_type = LSTMCell<QuantizedCellParamsDynamic>;
DEFINE_QUANTIZED_RNN_CELL(quantized_lstm_cell, TensorList, quantized_lstm_cell_type, quantized_lstm_return_type, prepare_quantized_lstm_hx);
DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_lstm_cell_dynamic, TensorList, quantized_lstm_cell_dynamic_type, quantized_lstm_return_type, prepare_quantized_lstm_hx);
// Helpers for simpler cells
using simple_hx_type = const Tensor&;
simple_hx_type prepare_quantized_hx(simple_hx_type hx) {
return hx;
}
// Quantized GRU cell
using quantized_gru_cell_type = GRUCell<QuantizedCellParams>;
using quantized_gru_cell_dynamic_type = GRUCell<QuantizedCellParamsDynamic>;
DEFINE_QUANTIZED_RNN_CELL(quantized_gru_cell, simple_hx_type, quantized_gru_cell_type, Tensor, prepare_quantized_hx);
DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_gru_cell_dynamic, simple_hx_type, quantized_gru_cell_dynamic_type, Tensor, prepare_quantized_hx);
// Quantized RNN w/ ReLU cell
using quantized_rnn_relu_cell_type = SimpleCell<relu_f, QuantizedCellParams>;
DEFINE_QUANTIZED_RNN_CELL(quantized_rnn_relu_cell, simple_hx_type, quantized_rnn_relu_cell_type, Tensor, prepare_quantized_hx);
using quantized_rnn_relu_cell_dynamic_type = SimpleCell<relu_f, QuantizedCellParamsDynamic>;
DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_rnn_relu_cell_dynamic, simple_hx_type, quantized_rnn_relu_cell_dynamic_type, Tensor, prepare_quantized_hx);
// Quantized RNN w/ tanh cell
using quantized_rnn_tanh_cell_type = SimpleCell<tanh_f, QuantizedCellParams>;
DEFINE_QUANTIZED_RNN_CELL(quantized_rnn_tanh_cell, simple_hx_type, quantized_rnn_tanh_cell_type, Tensor, prepare_quantized_hx);
using quantized_rnn_tanh_cell_dynamic_type = SimpleCell<tanh_f, QuantizedCellParamsDynamic>;
DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_rnn_tanh_cell_dynamic, simple_hx_type, quantized_rnn_tanh_cell_dynamic_type, Tensor, prepare_quantized_hx);
namespace {
static auto ensure_linear_params_registered = register_linear_params();
static auto cell_params_base_registry =
torch::class_<CellParamsBase>("rnn", "CellParamsBase")
.def_pickle(
[](const c10::intrusive_ptr<CellParamsBase>& self)
-> CellParamsSerializationType { return self->__getstate__(); },
[](CellParamsSerializationType state)
-> c10::intrusive_ptr<CellParamsBase> {
std::string type = std::get<0>(state);
TORCH_INTERNAL_ASSERT(cell_params_deserializers.count(type));
return cell_params_deserializers[type](std::move(state));
});
TORCH_LIBRARY_FRAGMENT(aten, m) {
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_lstm.input(Tensor input, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_lstm.input_legacy(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_lstm.data_legacy(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_gru.input(Tensor input, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_gru.input_legacy(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)"));
m.def(
TORCH_SELECTIVE_SCHEMA("aten::quantized_gru.data_legacy(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)"));
}
TORCH_LIBRARY_FRAGMENT(quantized, m) {
m.def(TORCH_SELECTIVE_SCHEMA("quantized::make_quantized_cell_params_dynamic(__torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh, Tensor bias_ih, Tensor bias_hh, bool reduce_range=False) -> __torch__.torch.classes.rnn.CellParamsBase"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::make_quantized_cell_params_fp16(__torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh) -> __torch__.torch.classes.rnn.CellParamsBase"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::make_quantized_cell_params(Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh) -> __torch__.torch.classes.rnn.CellParamsBase"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::quantized_lstm_cell_dynamic(Tensor input, Tensor[] hx, __torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh, Tensor bias_ih, Tensor bias_hh) -> (Tensor, Tensor)"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::quantized_gru_cell_dynamic(Tensor input, Tensor hx, __torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh, Tensor b_ih, Tensor b_hh) -> Tensor"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::quantized_rnn_relu_cell_dynamic(Tensor input, Tensor hx, __torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh, Tensor b_ih, Tensor b_hh) -> Tensor"));
m.def(TORCH_SELECTIVE_SCHEMA("quantized::quantized_rnn_tanh_cell_dynamic(Tensor input, Tensor hx, __torch__.torch.classes.quantized.LinearPackedParamsBase w_ih, __torch__.torch.classes.quantized.LinearPackedParamsBase w_hh, Tensor b_ih, Tensor b_hh) -> Tensor"));
}
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_lstm.input"), TORCH_FN(quantized_lstm_input));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_lstm.data"), TORCH_FN(quantized_lstm_data));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_lstm.input_legacy"), TORCH_FN(quantized_lstm_input_legacy));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_lstm.data_legacy"), TORCH_FN(quantized_lstm_data_legacy));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_gru.input"), TORCH_FN(quantized_gru_input));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_gru.data"), TORCH_FN(quantized_gru_data));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_gru.input_legacy"), TORCH_FN(quantized_gru_input_legacy));
m.impl(TORCH_SELECTIVE_NAME("aten::quantized_gru.data_legacy"), TORCH_FN(quantized_gru_data_legacy));
}
TORCH_LIBRARY_IMPL(quantized, CPU, m) {
m.impl(TORCH_SELECTIVE_NAME("quantized::make_quantized_cell_params_dynamic"), TORCH_FN(make_quantized_cell_params_dynamic));
m.impl(TORCH_SELECTIVE_NAME("quantized::make_quantized_cell_params"), TORCH_FN(make_quantized_cell_params));
m.impl(TORCH_SELECTIVE_NAME("quantized::quantized_lstm_cell_dynamic"), TORCH_FN(quantized_lstm_cell_dynamic));
m.impl(TORCH_SELECTIVE_NAME("quantized::quantized_gru_cell_dynamic"), TORCH_FN(quantized_gru_cell_dynamic));
m.impl(TORCH_SELECTIVE_NAME("quantized::quantized_rnn_relu_cell_dynamic"), TORCH_FN(quantized_rnn_relu_cell_dynamic));
m.impl(TORCH_SELECTIVE_NAME("quantized::quantized_rnn_tanh_cell_dynamic"), TORCH_FN(quantized_rnn_tanh_cell_dynamic));
}
TORCH_LIBRARY_IMPL(quantized, CatchAll, m) {
m.impl(TORCH_SELECTIVE_NAME("quantized::make_quantized_cell_params_fp16"), TORCH_FN(make_quantized_cell_params_fp16));
}
} // namespace
}} // namespace at::native