blob: 34da1564168b105dd04d8c1f7980430e6b65f1c9 [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <c10/util/irange.h>
namespace at { namespace native {
void checkLongTensor(const Tensor& tensor) {
TORCH_CHECK(tensor.dim() == 1 && tensor.device().type() == at::kCPU && tensor.scalar_type() == at::kLong,
"'lengths' argument should be a 1D CPU int64 tensor, but got ",
tensor.dim(), "D ", tensor.device().str(), " ", tensor.scalar_type(), " tensor");
}
// This method returns `(data, batch_sizes)`, which are then passed into a
// `PackedSequence` constructor.
// `data` can be on arbitrary device and of arbitrary dtype, but `batch_sizes`
// must be a CPU int64 tensor.
// See NOTE [ device and dtype of a PackedSequence ]
std::tuple<Tensor, Tensor> _pack_padded_sequence(const Tensor& _input, const Tensor& _lengths, bool batch_first) {
auto input = batch_first ? _input.transpose(0, 1) : _input;
auto lengths_t = _lengths.contiguous();
checkLongTensor(lengths_t);
int64_t batch_size = input.size(1);
int64_t * lengths = lengths_t.data_ptr<int64_t>();
TORCH_CHECK(input.numel() > 0, "Cannot pack empty tensors.");
TORCH_CHECK(lengths_t.size(0) == batch_size,
"Expected `len(lengths)` to be equal to batch_size, but got ", lengths_t.size(0),
" (batch_size=", batch_size, ")");
TORCH_CHECK(lengths[batch_size - 1] > 0,
"Length of all samples has to be greater than 0, but found an element "
"in 'lengths' that is <= 0");
for (const auto i : c10::irange(batch_size - 1)) {
if (lengths[batch_size - 1 - i] > lengths[batch_size - 2 - i]) {
// NB: enforce_sorted is implemented at a Python level, but the sortedness
// check lives here. If enforce_sorted=False then this error should never
// get called.
AT_ERROR("`lengths` array must be sorted in decreasing order when "
"`enforce_sorted` is True. You can pass `enforce_sorted=False` "
"to pack_padded_sequence and/or pack_sequence to sidestep this "
"requirement if you do not need ONNX exportability.");
}
}
std::vector<at::Tensor> steps;
steps.reserve(batch_size);
at::Tensor batch_sizes_t = at::empty(lengths[0], _lengths.options());
int64_t * batch_sizes = batch_sizes_t.data_ptr<int64_t>();
std::vector<int64_t> step_shape; // == [-1, *input.shape[2:]]
{
auto input_sizes = input.sizes();
step_shape.reserve(input_sizes.size());
auto s_input_sizes = input_sizes.slice(2);
step_shape.push_back(-1);
step_shape.insert(step_shape.end(), s_input_sizes.begin(), s_input_sizes.end());
}
// To understand what's going on in this loop imagine that the input is a padded 2D
// array that looks like this (x = valid entry, . = padding)
//
// 1 1 1 1 1
// 2 2 2 . .
// 2 2 2 . .
// 4 . . . .
// 4 . . . .
//
// Where the vertical dimension corresponds to time, and horizontal dim to batch.
// In this example, the lengths array will be equal to [5, 3, 3, 1, 1], and we will
// iterate over them in reverse order (from the rightmost column to the left).
// We want to avoid eager slicing of the input at every time step, and wait for
// the moments where the length increases. In this example, that will happen at the
// first, second and fourth steps. Then, we slice out the whole block of the input
// that corresponds to this length, and hasn't been sliced yet (the steps at which each
// element is sliced are annotated in the array above). You can think of this as if we
// were scanning the sequences from the shortest one, and every time we realize there's
// more elements below in our column, we lower the counter (prev_l), and append the new
// block to the output.
int64_t prev_l = 0;
for (int64_t i = 0; i < batch_size; ++i) {
int64_t l = lengths[batch_size - 1 - i];
if (l > prev_l) {
auto current_batch_size = batch_size - i;
steps.push_back(input.slice(0, prev_l, l).slice(1, 0, current_batch_size).contiguous().view(step_shape));
for (int64_t j = 0; j < (l - prev_l); ++j) {
(*batch_sizes++) = current_batch_size;
}
prev_l = l;
}
TORCH_CHECK(l >= prev_l);
}
return std::make_tuple(at::cat(steps), batch_sizes_t);
}
// `grad` could be on arbitrary device and of arbitrary dtype, but `_batch_sizes`
// is guaranteed to be a CPU int64 tensor.
// See NOTE [ device and dtype of a PackedSequence ]
Tensor _pack_padded_sequence_backward(const Tensor& grad, at::IntArrayRef input_size, const Tensor& _batch_sizes, bool batch_first) {
std::vector<int64_t> input_size_after_t = input_size.vec();
if (batch_first) {
TORCH_CHECK(input_size.size() >= 2);
std::swap(input_size_after_t[0], input_size_after_t[1]);
}
auto grad_input = at::zeros(input_size_after_t, grad.options());
auto batch_sizes_t = _batch_sizes.contiguous();
checkLongTensor(batch_sizes_t);
int64_t offset = 0;
int64_t max_seq_len = batch_sizes_t.size(0);
int64_t * batch_sizes = batch_sizes_t.data_ptr<int64_t>();
for (int64_t i = 0; i < max_seq_len; ++i) {
grad_input[i].slice(0, 0, batch_sizes[i]).copy_(grad.slice(0, offset, offset + batch_sizes[i]));
offset += batch_sizes[i];
}
if (batch_first) {
grad_input = grad_input.transpose(0, 1);
}
return grad_input;
}
std::tuple<Tensor, Tensor> _pad_packed_sequence(const Tensor& data, const Tensor& _batch_sizes, bool batch_first, const Scalar& padding_value, int64_t total_length) {
auto batch_sizes_t = _batch_sizes.contiguous();
checkLongTensor(batch_sizes_t);
int64_t * batch_sizes = batch_sizes_t.data_ptr<int64_t>();
int64_t max_batch_size = batch_sizes[0];
int64_t max_real_seq_length = batch_sizes_t.size(0);
int64_t max_seq_length = max_real_seq_length;
if (total_length > 0) {
TORCH_CHECK(total_length >= max_seq_length,
"Expected total_length to be at least the length of the longest "
"sequence in input, but got total_length=", total_length, " and "
"max sequence length being ", max_seq_length);
max_seq_length = total_length;
}
std::vector<int64_t> output_size; // == [max_seq_length, max_batch_size, *var_data.size()[1:]]
{
output_size.reserve(data.dim() + 1);
output_size.push_back(max_seq_length);
output_size.push_back(max_batch_size);
auto s_data_size = data.sizes().slice(1);
output_size.insert(output_size.end(), s_data_size.begin(), s_data_size.end());
}
auto output = at::full(output_size, padding_value, data.options());
// This will be modified at every iteration, but we reserve memory for it now.
std::vector<int64_t> tmp_view_size = std::move(output_size); // == [-1, -1, *var_data.size()[1:]]
at::Tensor lengths_t = at::empty(max_batch_size, batch_sizes_t.options());
int64_t * lengths = lengths_t.data_ptr<int64_t>() + max_batch_size - 1;
int64_t data_offset = 0;
int64_t prev_batch_size = max_batch_size;
int64_t prev_i = 0;
for (int64_t i = 0; i <= max_real_seq_length; ++i) {
int64_t batch_size = i != max_real_seq_length ? batch_sizes[i] : 0;
if (batch_size != prev_batch_size) {
int64_t l = prev_batch_size * (i - prev_i);
// The lines below are equivalent to this:
// output[prev_i:i, :prev_batch_size] = tmp.view(i - prev_i, prev_batch_size, *input.shape[2:])
auto tmp = data.slice(0, data_offset, data_offset + l);
tmp_view_size[0] = i - prev_i;
tmp_view_size[1] = prev_batch_size;
output.slice(0, prev_i, i).slice(1, 0, prev_batch_size).copy_(tmp.view(tmp_view_size));
data_offset += l;
prev_i = i;
}
int64_t dec = prev_batch_size - batch_size;
if (dec > 0) {
for (int64_t j = 0; j < dec; ++j) {
(*lengths--) = i;
}
}
prev_batch_size = batch_size;
}
if (batch_first) {
output = output.transpose(0, 1);
}
return std::make_tuple(output, lengths_t);
}
}} // namespace at::native