| #include <ATen/ATen.h> |
| #include <ATen/NativeFunctions.h> |
| #include <ATen/NamedTensorUtils.h> |
| #include <ATen/native/Pool.h> |
| |
| |
| namespace at { |
| namespace native { |
| |
| namespace { |
| |
| void max_pool2d_with_indices_out_cpu_template( |
| Tensor& output, |
| Tensor& indices, |
| const Tensor& input, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode) |
| { |
| // #20866, #22032: Guarantee this for the official C++ API? |
| TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2, |
| "max_pool2d: kernel_size must either be a single int, or a tuple of two ints") |
| const int kH = safe_downcast<int, int64_t>(kernel_size[0]); |
| const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]); |
| |
| // NB: stride default is not expressible as an integer constant, so we accept |
| // empty stride for this case |
| TORCH_CHECK(stride.size() == 0 || stride.size() == 1 || stride.size() == 2, |
| "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints") |
| const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]); |
| const int dW = stride.empty() ? kW : |
| stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]); |
| |
| TORCH_CHECK(padding.size() == 1 || padding.size() == 2, |
| "max_pool2d: padding must be either be a single int, or a tuple of two ints"); |
| const int padH = safe_downcast<int, int64_t>(padding[0]); |
| const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]); |
| |
| TORCH_CHECK(dilation.size() == 1 || dilation.size() == 2, |
| "max_pool2d: dilation must be either a single int, or a tuple of two ints"); |
| const int dilationH = safe_downcast<int, int64_t>(dilation[0]); |
| const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]); |
| |
| TORCH_CHECK((input.ndimension() == 3 || input.ndimension() == 4), |
| "non-empty 3D or 4D (batch mode) tensor expected for input"); |
| |
| TORCH_CHECK(input.dtype() == output.dtype(), |
| "expected dtype ", input.dtype(), " for `output` but got dtype ", output.dtype()); |
| |
| /* sizes */ |
| const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1; |
| const int64_t nInputPlane = input.size(-3); |
| const int64_t inputHeight = input.size(-2); |
| const int64_t inputWidth = input.size(-1); |
| |
| const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, ceil_mode); |
| const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, ceil_mode); |
| |
| pool2d_shape_check( |
| input, |
| kH, kW, dH, dW, padH, padW, dilationH, dilationW, |
| nInputPlane, |
| inputHeight, inputWidth, |
| outputHeight, outputWidth, input.suggest_memory_format()); |
| |
| /* resize output and indices */ |
| if (input.ndimension() == 3) { |
| output.resize_({nInputPlane, outputHeight, outputWidth}); |
| /* indices will contain the locations for each output point */ |
| indices.resize_({nInputPlane, outputHeight, outputWidth}); |
| } else { |
| output.resize_({nbatch, nInputPlane, outputHeight, outputWidth}, input.suggest_memory_format()); |
| /* indices will contain the locations for each output point */ |
| indices.resize_({nbatch, nInputPlane, outputHeight, outputWidth}, input.suggest_memory_format()); |
| } |
| |
| max_pool2d_kernel( |
| kCPU, output, indices, input, |
| kW, kH, |
| dW, dH, |
| padW, padH, |
| dilationW, dilationH); |
| } |
| |
| Tensor& max_pool2d_with_indices_backward_out_cpu_template( |
| Tensor& gradInput, |
| const Tensor& gradOutput, |
| const Tensor& input, |
| const Tensor& indices, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode) |
| { |
| // #20866, #22032: Guarantee this for the official C++ API? |
| TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2, |
| "max_pool2d: kernel_size must either be a single int, or a tuple of two ints") |
| const int kH = safe_downcast<int, int64_t>(kernel_size[0]); |
| const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]); |
| |
| // NB: stride default is not expressible as an integer constant, so we accept |
| // empty stride for this case |
| TORCH_CHECK(stride.size() == 0 || stride.size() == 1 || stride.size() == 2, |
| "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints") |
| const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]); |
| const int dW = stride.empty() ? kW : |
| stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]); |
| |
| TORCH_CHECK(padding.size() == 1 || padding.size() == 2, |
| "max_pool2d: padding must be either be a single int, or a tuple of two ints"); |
| const int padH = safe_downcast<int, int64_t>(padding[0]); |
| const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]); |
| |
| TORCH_CHECK(dilation.size() == 1 || dilation.size() == 2, |
| "max_pool2d: dilation must be either a single int, or a tuple of two ints"); |
| const int dilationH = safe_downcast<int, int64_t>(dilation[0]); |
| const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]); |
| |
| TORCH_CHECK((input.ndimension() == 3 || input.ndimension() == 4), |
| "non-empty 3D or 4D (batch mode) tensor expected for input"); |
| |
| TORCH_CHECK(input.dtype() == gradOutput.dtype(), |
| "expected dtype ", input.dtype(), " for `gradOutput` but got dtype ", gradOutput.dtype()); |
| TORCH_CHECK(input.dtype() == gradInput.dtype(), |
| "expected dtype ", input.dtype(), " for `gradInput` but got dtype ", gradInput.dtype()); |
| |
| /* resize */ |
| gradInput.resize_(input.sizes(), input.suggest_memory_format()); |
| gradInput.zero_(); |
| |
| /* sizes */ |
| const int64_t nbatch = input.ndimension() == 4 ? input.size(-4) : 1; |
| const int64_t nInputPlane = input.size(-3); |
| const int64_t inputHeight = input.size(-2); |
| const int64_t inputWidth = input.size(-1); |
| const int64_t outputHeight = gradOutput.size(-2); |
| const int64_t outputWidth = gradOutput.size(-1); |
| |
| /* XXX preserve the existing shape check behavior */ |
| const int64_t outputHeight_for_shape_check = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, ceil_mode); |
| const int64_t outputWidth_for_shape_check = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, ceil_mode); |
| |
| max_pool2d_backward_shape_check( |
| input, |
| gradOutput, |
| indices, |
| nbatch, |
| kH, kW, dH, dW, padH, padW, dilationH, dilationW, |
| nInputPlane, |
| inputHeight, inputWidth, |
| outputHeight_for_shape_check, outputWidth_for_shape_check, |
| input.suggest_memory_format()); |
| |
| max_pool2d_backward_kernel(kCPU, gradInput, gradOutput, indices); |
| |
| return gradInput; |
| } |
| |
| } // namespace |
| |
| std::tuple<Tensor&, Tensor&> max_pool2d_with_indices_out_cpu(const Tensor& input, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode, |
| Tensor& output, |
| Tensor& indices) |
| { |
| max_pool2d_with_indices_out_cpu_template( |
| output, |
| indices, |
| input, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode); |
| return std::tuple<Tensor&, Tensor&>(output, indices); |
| } |
| |
| std::tuple<Tensor, Tensor> max_pool2d_with_indices_cpu( |
| const Tensor& input, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode) |
| { |
| NoNamesGuard guard; |
| |
| Tensor output = at::empty({0}, input.options()); |
| Tensor indices = at::empty({0}, input.options().dtype(kLong)); |
| max_pool2d_with_indices_out_cpu_template( |
| output, |
| indices, |
| input, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode); |
| |
| guard.reset(); |
| namedinference::propagate_names(output, input); |
| namedinference::propagate_names(indices, input); |
| |
| return std::tuple<Tensor, Tensor>(output, indices); |
| } |
| |
| Tensor& max_pool2d_with_indices_backward_out_cpu( |
| const Tensor& gradOutput, |
| const Tensor& input, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode, |
| const Tensor& indices, |
| Tensor& gradInput) |
| { |
| max_pool2d_with_indices_backward_out_cpu_template( |
| gradInput, |
| gradOutput, |
| input, |
| indices, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode); |
| return gradInput; |
| } |
| |
| Tensor max_pool2d_with_indices_backward_cpu( |
| const Tensor& gradOutput, |
| const Tensor& input, |
| IntArrayRef kernel_size, |
| IntArrayRef stride, |
| IntArrayRef padding, |
| IntArrayRef dilation, |
| bool ceil_mode, |
| const Tensor& indices) |
| { |
| auto gradInput = at::empty({0}, input.options()); |
| max_pool2d_with_indices_backward_out_cpu_template( |
| gradInput, |
| gradOutput, |
| input, |
| indices, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode); |
| return gradInput; |
| } |
| |
| DEFINE_DISPATCH(max_pool2d_kernel); |
| DEFINE_DISPATCH(max_pool2d_backward_kernel); |
| |
| } // at::native |
| } // at |