blob: d29b9fb31171299ed1e8b897671d574771864f59 [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/CPUFunctions.h>
#include <ATen/Dispatch.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/ScalarOps.h>
namespace at {
namespace meta {
TORCH_META_FUNC(addmv)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta, const Scalar& alpha) {
TORCH_CHECK((mat.dim() == 2 && vec.dim() == 1 && self.dim() <= 1),
"vector + matrix @ vector expected, got ", self.dim(), ", ", mat.dim(), ", ", vec.dim());
TORCH_CHECK(mat.size(1) == vec.size(0) && (mat.size(0) == self.numel() || self.numel() == 1),
"size mismatch, got ", self.size(0), ", ", mat.size(0), "x", mat.size(1), ",", vec.size(0));
auto names = at::namedinference::propagate_names_for_addmv(mat, vec, self);
set_output(0, IntArrayRef(mat.sizes().data(), 1), {}, mat.options(), names);
auto result = maybe_get_output(0);
//this check can fire for inplace op only, for all other versions result is guaranteed to be correct size
TORCH_CHECK(result.dim() == 1 && result.sizes()[0] == mat.sizes()[0], "output of addmv operation should be 1D with ",
"size equal to mat.size(0), yet got output size ", result.sizes(), " and mat.size(0) ", mat.size(0));
}
}
namespace native {
template<typename scalar_t>
void gemv(char trans, int64_t m, int64_t n, scalar_t alpha, scalar_t *a, int64_t lda, scalar_t *x, int64_t incx, scalar_t beta, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t dot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t vdot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
constexpr inline bool lda_cond(int64_t m, int64_t n, int64_t lda) {
return n == 1 || lda >= std::max<int64_t>(1L, m);
}
TORCH_IMPL_FUNC(addmv_out_cpu)(const Tensor &self, const Tensor &mat, const Tensor &vec, const Scalar& beta_, const Scalar& alpha_, const Tensor& result) {
c10::MaybeOwned<Tensor> self_ = expand_size(self, {mat.size(0)});
auto betaval = beta_.toComplexDouble();
if (mat.numel() == 0) {
// shortcut for an empty matrix
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (betaval == 0.0) {
result.zero_();
} else {
at::cpu::mul_out(
const_cast<Tensor&>(result),
self,
at::native::scalar_tensor(
beta_, self.scalar_type(), c10::nullopt /* layout */, at::kCPU, c10::nullopt /* pin_memory */));
}
} else {
if (!result.is_same(*self_) && betaval != 0.0) { //if beta is 0, result contents is ignored
at::native::copy_(const_cast<Tensor&>(result), *self_);
}
if (result.numel() != 0) {
auto r_stride = result.stride(0);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(kBFloat16, mat.scalar_type(), "addmv_impl_cpu", [&] {
auto beta = beta_.to<scalar_t>();
auto alpha = alpha_.to<scalar_t>();
if (mat.stride(0) == 1 && lda_cond(mat.size(0), mat.size(1), mat.stride(1))) {
gemv<scalar_t>('n', mat.size(0), mat.size(1), alpha, mat.data_ptr<scalar_t>(), mat.stride(1),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else if (mat.stride(1) == 1 && lda_cond(mat.size(1), mat.size(0), mat.stride(0))) {
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, mat.data_ptr<scalar_t>(), mat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else {
Tensor cmat = mat.contiguous();
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, cmat.data_ptr<scalar_t>(), cmat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
});
}
}
}
Tensor &mv_out(const Tensor &self, const Tensor &vec, Tensor& result) {
//self arg sent to addmv_out cannot be resized
//here we use result as self argument for addmv, and result is user supplied and can be wrong size
//it's not a hard error, because we allow resizing result, but it becomes a hard error
//in addmv, because addmv expects self to satisfy proper conditions
//to avoid this, supply correctly sized self, its contents doesn't matter because beta is 0
if (result.dim() > 1 || (result.numel() != self.size(0) || result.numel() !=1)) {
Tensor self_addmv = at::empty({self.size(0)}, self.options());
return at::addmv_out(result, self_addmv, self, vec, 0, 1);
}
return at::addmv_out(result, result, self, vec, 0, 1);
}
Tensor mv(const Tensor &self, const Tensor &vec) {
Tensor result = at::empty({self.size(0)}, self.options());
//inplace version is more efficient if we can use it
return at::addmv_(result, self, vec, 0, 1);
}
inline void dot_check(const Tensor& self, const Tensor& other) {
TORCH_CHECK(
self.dim() == 1 && other.dim() == 1,
"1D tensors expected, but got ",
self.dim(),
"D and ",
other.dim(),
"D tensors");
TORCH_CHECK(
self.scalar_type() == other.scalar_type(),
"dot : expected both vectors to have same dtype, but found ",
self.scalar_type(),
" and ",
other.scalar_type());
TORCH_CHECK(
self.numel() == other.numel(),
"inconsistent tensor size, expected tensor [",
self.numel(),
"] and src [",
other.numel(),
"] to have the same number of elements, but got ",
self.numel(),
" and ",
other.numel(),
" elements respectively");
}
Tensor dot(const Tensor &self, const Tensor &other){
at::NoNamesGuard guard;
dot_check(self, other);
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(at::ScalarType::Half, self.scalar_type(), "dot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(dot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
Tensor vdot(const Tensor &self, const Tensor &other){
at::NoNamesGuard guard;
// Dispatch to `dot` for real dtypes.
if (!self.is_complex()){
return at::dot(self, other);
}
// For complex dtypes.
dot_check(self, other);
return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(vdot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
}} // namespace at::native