blob: f107768b5bfb757e1739de1828a8d3ae9ddd831f [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/Pool.h>
#include <tuple>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
static void avg_pool3d_out_frame(
scalar_t *input_p,
scalar_t *output_p,
int64_t nslices,
int64_t itime,
int64_t iwidth,
int64_t iheight,
int64_t otime,
int64_t owidth,
int64_t oheight,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int padT,
int padW,
int padH,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
at::parallel_for(0, nslices, 0, [&](int64_t start, int64_t end) {
for (auto k = start; k < end; k++)
{
int64_t i, j, ti;
/* local pointers. */
scalar_t *ip = input_p + k * itime * iwidth * iheight;
scalar_t *op = output_p + k * otime * owidth * oheight;
for (i = 0; i < otime * oheight * owidth; ++i)
*(op + i) = 0;
/* loop over output */
for (ti = 0; ti < otime; ti++)
{
for (i = 0; i < oheight; i++)
{
for (j = 0; j < owidth; j++)
{
/* compute pool range. */
int64_t tstart = ti * dT - padT;
int64_t hstart = i * dH - padH;
int64_t wstart = j * dW - padW;
int64_t tend = std::min(tstart + kT, itime + padT);
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend - tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);
if (tstart >= tend || hstart >= hend || wstart >= wend) {
++op;
continue;
}
int divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (tend - tstart) * (hend - hstart) * (wend - wstart);
}
}
/* compute local sum: */
scalar_t sum = 0.0;
int64_t x, y, z;
for (z = tstart; z < tend; z++)
{
for (y = hstart; y < hend; y++)
{
for (x = wstart; x < wend; x++)
{
sum += *(ip + z * iwidth * iheight + y * iwidth + x);
}
}
}
/* set output to local max */
*op++ += sum / divide_factor;
}
}
}
}
});
}
void avg_pool3d_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"avg_pool3d: kernel_size must be a single int, or a tuple of three ints");
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 3,
"avg_pool3d: stride must be omitted, a single int, or a tuple of three ints");
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"avg_pool3d: padding must be a single int, or a tuple of three ints");
const int padT = safe_downcast<int, int64_t>(padding[0]);
const int padH = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[1]);
const int padW = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK((input_.ndimension() == 4 || input_.ndimension() == 5),
"non-empty 4D or 5D (batch mode) tensor expected for input");
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
"divisor must be not zero");
const int64_t nslices = input_.size(-4);
const int64_t itime = input_.size(-3);
const int64_t iheight = input_.size(-2);
const int64_t iwidth = input_.size(-1);
const int64_t otime = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode);
const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode);
const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode);
pool3d_shape_check(
input_,
nslices,
kT, kH, kW,
dT, dH, dW,
padT, padH, padW,
1, 1, 1,
itime, iheight, iwidth,
otime, oheight, owidth,
/*check_input_size=*/ true);
/* get contiguous input */
Tensor input = input_.contiguous();
if (input.ndimension() == 4) /* non-batch mode */
{
/* resize output */
output.resize_({nslices, otime, oheight, owidth});
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_out_frame",
[&] {
scalar_t *input_data = input.data_ptr<scalar_t>();
scalar_t *output_data = output.data_ptr<scalar_t>();
avg_pool3d_out_frame(
input_data, output_data, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override);
});
}
else /* batch mode */
{
const int64_t nbatch = input.size(0);
const int64_t istride = nslices * itime * iwidth * iheight;
const int64_t ostride = nslices * otime * owidth * oheight;
/* resize output */
output.resize_({nbatch, nslices, otime, oheight, owidth});
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_out_frame",
[&] {
scalar_t *input_data = input.data_ptr<scalar_t>();
scalar_t *output_data = output.data_ptr<scalar_t>();
at::parallel_for(0, nbatch, 0, [&](int64_t start, int64_t end) {
for (auto p = start; p < end; p++) {
avg_pool3d_out_frame(
input_data + p * istride, output_data + p * ostride, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override
);
}
});
});
}
}
template <typename scalar_t>
static void avg_pool3d_backward_out_frame(
scalar_t *gradInput_p,
scalar_t *gradOutput_p,
int64_t nslices,
int64_t itime,
int64_t iwidth,
int64_t iheight,
int64_t otime,
int64_t owidth,
int64_t oheight,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int padT,
int padW,
int padH,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
at::parallel_for(0, nslices, 0, [&](int64_t start, int64_t end) {
for (auto k = start; k < end; k++)
{
int64_t i, j, ti;
/* local pointers */
scalar_t *ip = gradInput_p + k * itime * iwidth * iheight;
scalar_t *op = gradOutput_p + k * otime * owidth * oheight;
for (i = 0; i < itime*iwidth*iheight; i++)
*(ip + i) = 0;
/* loop over output */
for (ti = 0; ti < otime; ti++)
{
for (i = 0; i < oheight; i++)
{
for (j = 0; j < owidth; j++)
{
int64_t tstart = ti * dT - padT;
int64_t hstart = i * dH - padH;
int64_t wstart = j * dW - padW;
int64_t tend = std::min(tstart + kT, itime + padT);
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend -tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);
int divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (tend - tstart) * (hend - hstart) * (wend - wstart);
}
}
/* scatter gradients out to footprint: */
scalar_t val = *op++;
int64_t x,y,z;
for (z = tstart; z < tend; z++)
{
for (y = hstart; y < hend; y++)
{
for (x = wstart; x < wend; x++)
{
*(ip + z * iheight * iwidth + y * iwidth + x) += val / divide_factor;
}
}
}
}
}
}
}
});
}
Tensor& avg_pool3d_backward_out_cpu_template(
Tensor& gradInput,
const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"avg_pool3d: kernel_size must be a single int, or a tuple of three ints");
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 3,
"avg_pool3d: stride must be omitted, a single int, or a tuple of three ints");
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"avg_pool3d: padding must be a single int, or a tuple of three ints");
const int padT = safe_downcast<int, int64_t>(padding[0]);
const int padH = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[1]);
const int padW = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK((input.ndimension() == 4 || input.ndimension() == 5),
"non-empty 4D or 5D (batch mode) tensor expected for input");
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0, "divisor must be not zero");
const int64_t nslices = input.size(-4);
const int64_t itime = input.size(-3);
const int64_t iheight = input.size(-2);
const int64_t iwidth = input.size(-1);
/* get contiguous gradOutput */
Tensor gradOutput = gradOutput_.contiguous();
const int64_t otime = gradOutput.size(-3);
const int64_t oheight = gradOutput.size(-2);
const int64_t owidth = gradOutput.size(-1);
/* XXX shape check behavior from TH */
const int64_t otime_for_shape_check = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode);
const int64_t oheight_for_shape_check = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode);
const int64_t owidth_for_shape_check = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode);
avg_pool3d_backward_shape_check(
input,
gradOutput_,
nslices,
kT, kH, kW,
dT, dH, dW,
padT, padH, padW,
itime, iheight, iwidth,
otime_for_shape_check, oheight_for_shape_check, owidth_for_shape_check);
/* resize */
gradInput.resize_as_(input);
gradInput.zero_();
/* backprop */
if (input.ndimension() == 4) /* non-batch mode*/
{
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_backward_out_frame",
[&] {
scalar_t *gradInput_data = gradInput.data_ptr<scalar_t>();
scalar_t *gradOutput_data = gradOutput.data_ptr<scalar_t>();
avg_pool3d_backward_out_frame(
gradInput_data, gradOutput_data,
nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override);
});
}
else /* batch mode */
{
const int64_t nbatch = input.size(0);
const int64_t istride = nslices * itime * iwidth * iheight;
const int64_t ostride = nslices * otime * owidth * oheight;
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_backward_out_frame",
[&] {
scalar_t *gradInput_data = gradInput.data_ptr<scalar_t>();
scalar_t *gradOutput_data = gradOutput.data_ptr<scalar_t>();
at::parallel_for(0, nbatch, 0, [&](int64_t start, int64_t end) {
for (auto p = start; p < end; p++)
{
avg_pool3d_backward_out_frame(
gradInput_data + p * istride, gradOutput_data + p * ostride, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override
);
}
});
});
}
return gradInput;
}
} // namespace
Tensor& avg_pool3d_out_cpu(const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override,
Tensor& output)
{
avg_pool3d_out_cpu_template(
output,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return output;
}
Tensor avg_pool3d_cpu(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
Tensor output = at::empty({0}, input.options());
avg_pool3d_out_cpu_template(
output,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return output;
}
Tensor& avg_pool3d_backward_out_cpu(const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override,
Tensor& gradInput)
{
avg_pool3d_backward_out_cpu_template(
gradInput,
gradOutput_,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return gradInput;
}
Tensor avg_pool3d_backward_cpu(
const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
auto gradInput = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
avg_pool3d_backward_out_cpu_template(
gradInput,
gradOutput_,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return gradInput;
}
} // at::native
} // at