| from __future__ import absolute_import, division, print_function, unicode_literals |
| from test_pytorch_common import TestCase, run_tests |
| |
| import torch |
| import torch.onnx |
| from torch.onnx import utils, OperatorExportTypes, TrainingMode |
| from torch.onnx.symbolic_helper import _set_opset_version, _set_operator_export_type |
| import torch.utils.cpp_extension |
| from test_pytorch_common import skipIfUnsupportedMinOpsetVersion |
| |
| import torchvision |
| |
| import onnx |
| import onnxruntime # noqa |
| |
| import io |
| import copy |
| import unittest |
| |
| import numpy as np |
| |
| |
| skip = unittest.skip |
| |
| |
| class TestUtilityFuns(TestCase): |
| opset_version = 9 |
| |
| def setUp(self): |
| torch.manual_seed(0) |
| if torch.cuda.is_available(): |
| torch.cuda.manual_seed_all(0) |
| |
| def test_is_in_onnx_export(self): |
| test_self = self |
| |
| class MyModule(torch.nn.Module): |
| def forward(self, x): |
| test_self.assertTrue(torch.onnx.is_in_onnx_export()) |
| raise ValueError |
| return x + 1 |
| |
| x = torch.randn(3, 4) |
| f = io.BytesIO() |
| try: |
| torch.onnx.export(MyModule(), x, f, opset_version=self.opset_version) |
| except ValueError: |
| self.assertFalse(torch.onnx.is_in_onnx_export()) |
| |
| def test_validate_dynamic_axes_invalid_input_output_name(self): |
| import warnings |
| with warnings.catch_warnings(record=True) as w: |
| warnings.simplefilter("always") |
| utils._validate_dynamic_axes({'input1': {}, 'output': {}, |
| 'invalid_name1': {}, 'invalid_name2': {}}, |
| None, ['input1', 'input2'], ['output']) |
| messages = [str(warning.message) for warning in w] |
| assert "Provided key invalid_name1 for dynamic axes is not a valid input/output name" in messages |
| assert "Provided key invalid_name2 for dynamic axes is not a valid input/output name" in messages |
| assert len(messages) == 2 |
| |
| def test_constant_fold_transpose(self): |
| class TransposeModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.transpose(a, 1, 0) |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(3, 2) |
| graph, _, __ = utils._model_to_graph(TransposeModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Transpose" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_reduceL2(self): |
| class TransposeModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.norm(a, p=2, dim=-2, keepdim=False) |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(2, 3) |
| graph, _, __ = utils._model_to_graph(TransposeModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::ReduceL2" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_reduceL1(self): |
| class NormModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.norm(a, p=1, dim=-2) |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(2, 3) |
| graph, _, __ = utils._model_to_graph(NormModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::ReduceL1" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_slice(self): |
| class NarrowModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.narrow(a, 0, 0, 1) |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(1, 3) |
| graph, _, __ = utils._model_to_graph(NarrowModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Slice" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_slice_index_exceeds_dim(self): |
| class SliceIndexExceedsDimModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = a[1:10] # index exceeds dimension |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(1, 3) |
| graph, _, __ = utils._model_to_graph(SliceIndexExceedsDimModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Slice" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_slice_negative_index(self): |
| class SliceNegativeIndexModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = a[0:-1] # index relative to the end |
| c = torch.select(a, dim=-1, index=-2) |
| d = torch.select(a, dim=1, index=0) |
| return b + x, c + d |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(1, 3) |
| graph, _, __ = utils._model_to_graph(SliceNegativeIndexModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Slice" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| |
| def test_constant_fold_gather(self): |
| class GatherModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.select(a, dim=1, index=-2) |
| c = torch.index_select(a, dim=-2, index=torch.tensor([0, 1])) |
| return b + 1, c + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(1, 3) |
| model = GatherModule() |
| model(x) |
| graph, _, __ = utils._model_to_graph(GatherModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Gather" |
| |
| def test_constant_fold_unsqueeze(self): |
| class UnsqueezeModule(torch.nn.Module): |
| def forward(self, x): |
| a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) |
| b = torch.unsqueeze(a, 0) |
| return b + x |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(1, 2, 3) |
| graph, _, __ = utils._model_to_graph(UnsqueezeModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Unsqueeeze" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_concat(self): |
| class ConcatModule(torch.nn.Module): |
| def forward(self, x): |
| # Why did I insert a Cast here? There appears to be intentional |
| # behavior in ONNX constant folding where constant tensors which |
| # are not attached to any known to be foldable onnx |
| # operations don't get extracted into the initializer graph. So |
| # without these casts, we will actually fail to pull out one of |
| # the constants, thus failing constant folding. I think the |
| # test is wrong but I don't have time to write a more correct |
| # test (I think the right way to go about the test is to setup |
| # a predicate for what invariant graphs should hold after |
| # constant folding, and then verify this predicate holds. |
| # I think the asserts below are an attempt at this predicate, |
| # but it is not right!) |
| # |
| # More commentary at |
| # https://github.com/pytorch/pytorch/pull/18698/files#r340107552 |
| a = torch.tensor([[1., 2., 3.]]).to(torch.float) |
| b = torch.tensor([[4., 5., 6.]]).to(torch.float) |
| c = torch.cat((a, b), 0) |
| d = b + c |
| return x + d |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.ones(2, 3) |
| graph, _, __ = utils._model_to_graph(ConcatModule(), (x, ), |
| do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Concat" |
| assert node.kind() != "onnx::Cast" |
| assert node.kind() != "onnx::Constant" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_lstm(self): |
| class GruNet(torch.nn.Module): |
| def __init__(self): |
| super(GruNet, self).__init__() |
| self.mygru = torch.nn.GRU(7, 3, 1, bidirectional=False) |
| |
| def forward(self, input, initial_state): |
| return self.mygru(input, initial_state) |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| input = torch.randn(5, 3, 7) |
| h0 = torch.randn(1, 3, 3) |
| graph, _, __ = utils._model_to_graph(GruNet(), (input, h0), |
| do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Slice" |
| assert node.kind() != "onnx::Concat" |
| assert node.kind() != "onnx::Unsqueeze" |
| assert len(list(graph.nodes())) == 3 |
| |
| def test_constant_fold_transpose_matmul(self): |
| class MatMulNet(torch.nn.Module): |
| def __init__(self): |
| super(MatMulNet, self).__init__() |
| self.B = torch.nn.Parameter(torch.ones(5, 3)) |
| |
| def forward(self, A): |
| return torch.matmul(A, torch.transpose(self.B, -1, -2)) |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| A = torch.randn(2, 3) |
| graph, _, __ = utils._model_to_graph(MatMulNet(), (A), |
| do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Transpose" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_reshape(self): |
| class ReshapeModule(torch.nn.Module): |
| def __init__(self, ): |
| super(ReshapeModule, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| b = self.weight.reshape(1, -1, 1, 1) |
| return x * b |
| |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| x = torch.randn(4, 5) |
| graph, _, __ = utils._model_to_graph(ReshapeModule(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Reshape" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_div(self): |
| class Module(torch.nn.Module): |
| def __init__(self, ): |
| super(Module, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| div = self.weight.div(torch.tensor([1, 2, 3, 4, 5])) |
| return div * x |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, _, __ = utils._model_to_graph(Module(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Div" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_mul(self): |
| class Module(torch.nn.Module): |
| def __init__(self, ): |
| super(Module, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| mul = self.weight.mul(torch.tensor([1, 2, 3, 4, 5])) |
| return mul / x |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, _, __ = utils._model_to_graph(Module(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Mul" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_add(self): |
| class Module(torch.nn.Module): |
| def __init__(self, ): |
| super(Module, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| add = self.weight + torch.tensor([1, 2, 3, 4, 5]) |
| return add - x |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, params_dict, __ = utils._model_to_graph( |
| Module(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| self.assertTrue(node.kind() != "onnx::Add") |
| self.assertEqual(len(list(graph.nodes())), 1) |
| params = list(params_dict.values()) |
| self.assertEqual(len(params), 1) |
| weight = params[0] |
| # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 |
| self.assertEqualIgnoreType(weight, torch.tensor([2, 3, 4, 5, 6])) |
| |
| def test_constant_fold_sub(self): |
| class Module(torch.nn.Module): |
| def __init__(self, ): |
| super(Module, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| sub = self.weight - torch.tensor([1, 2, 3, 4, 5]) |
| return sub + x |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, params_dict, __ = utils._model_to_graph( |
| Module(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Sub" |
| self.assertEqual(len(list(graph.nodes())), 1) |
| params = list(params_dict.values()) |
| self.assertEqual(len(params), 1) |
| weight = params[0] |
| # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 |
| self.assertEqualIgnoreType(weight, torch.tensor([0, -1, -2, -3, -4])) |
| |
| def test_constant_fold_sqrt(self): |
| class Module(torch.nn.Module): |
| def __init__(self, ): |
| super(Module, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| sqrt = torch.sqrt(self.weight) |
| return sqrt / x |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, _, __ = utils._model_to_graph(Module(), (x, ), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Sqrt" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_constant_fold_shape(self): |
| class ShapeModule(torch.nn.Module): |
| def __init__(self): |
| super(ShapeModule, self).__init__() |
| self.register_buffer("weight", torch.ones(5)) |
| |
| def forward(self, x): |
| shape = self.weight.shape[0] |
| return x + shape |
| |
| x = torch.randn(2, 5) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, _, __ = utils._model_to_graph(ShapeModule(), (x, ), do_constant_folding=True, |
| _disable_torch_constant_prop=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::Shape" |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_strip_doc_string(self): |
| class MyModule(torch.nn.Module): |
| def forward(self, input): |
| return torch.exp(input) |
| x = torch.randn(3, 4) |
| |
| def is_model_stripped(f, strip_doc_string=None): |
| if strip_doc_string is None: |
| torch.onnx.export(MyModule(), x, f, opset_version=self.opset_version) |
| else: |
| torch.onnx.export(MyModule(), x, f, strip_doc_string=strip_doc_string, |
| opset_version=self.opset_version) |
| model = onnx.load(io.BytesIO(f.getvalue())) |
| model_strip = copy.copy(model) |
| onnx.helper.strip_doc_string(model_strip) |
| return model == model_strip |
| |
| # test strip_doc_string=True (default) |
| self.assertTrue(is_model_stripped(io.BytesIO())) |
| # test strip_doc_string=False |
| self.assertFalse(is_model_stripped(io.BytesIO(), False)) |
| |
| # NB: remove this test once DataParallel can be correctly handled |
| def test_error_on_data_parallel(self): |
| model = torch.nn.DataParallel(torch.nn.ReflectionPad2d((1, 2, 3, 4))) |
| x = torch.randn(1, 2, 3, 4) |
| f = io.BytesIO() |
| with self.assertRaisesRegex(ValueError, |
| 'torch.nn.DataParallel is not supported by ONNX ' |
| 'exporter, please use \'attribute\' module to ' |
| 'unwrap model from torch.nn.DataParallel. Try '): |
| torch.onnx.export(model, x, f, opset_version=self.opset_version) |
| |
| def test_export_mode(self): |
| class MyModule(torch.nn.Module): |
| def forward(self, x): |
| y = x + 1 |
| return y |
| |
| model = MyModule() |
| x = torch.randn(10, 3, 128, 128) |
| f = io.BytesIO() |
| |
| # set mode to in inference mode and export in training mode |
| model.eval() |
| old_state = model.training |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) |
| # verify that the model state is preserved |
| assert model.training == old_state |
| |
| # set mode to training mode and export in inference mode |
| model.train() |
| old_state = model.training |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL) |
| # verify that the model state is preserved |
| assert model.training == old_state |
| |
| def test_dropout_training(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.dropout = torch.nn.Dropout(0.4) |
| |
| def forward(self, x): |
| dropout = self.dropout(x) |
| return dropout |
| |
| model = MyModule() |
| x = torch.randn(10, 3, 128, 128) |
| |
| model.train() |
| |
| f = io.BytesIO() |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name: x.cpu().numpy()} |
| ort_outs = ort_sess.run(None, ort_inputs) |
| assert x != ort_outs[0] |
| |
| def test_aten_fallthrough(self): |
| # Test aten export of op with no symbolic |
| class Module(torch.nn.Module): |
| def forward(self, x): |
| return torch.triu(x) |
| |
| x = torch.randn(2, 3, 4) |
| _set_opset_version(self.opset_version) |
| graph, _, __ = utils._model_to_graph(Module(), (x, ), |
| operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH) |
| iter = graph.nodes() |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "aten::triu" |
| |
| def test_custom_op_fallthrough(self): |
| # Test custom op |
| op_source = """ |
| #include <torch/script.h> |
| |
| torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) { |
| return self + other; |
| } |
| |
| static auto registry = |
| torch::RegisterOperators("custom_namespace::custom_op", &custom_add); |
| """ |
| |
| torch.utils.cpp_extension.load_inline( |
| name="custom_add", |
| cpp_sources=op_source, |
| is_python_module=False, |
| verbose=True, |
| ) |
| |
| class FooModel(torch.nn.Module): |
| def forward(self, input, other): |
| # Calling custom op |
| return torch.ops.custom_namespace.custom_op(input, other) |
| |
| x = torch.randn(2, 3, 4, requires_grad=False) |
| y = torch.randn(2, 3, 4, requires_grad=False) |
| model = FooModel() |
| graph, _, __ = torch.onnx.utils._model_to_graph(model, (x, y), |
| operator_export_type=torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH) |
| iter = graph.nodes() |
| assert next(iter).kind() == "custom_namespace::custom_op" |
| |
| def test_onnx_fallthrough(self): |
| # Test aten export of op with symbolic for aten |
| x = torch.randn(100, 128) |
| y = torch.randn(100, 128) |
| model = torch.nn.CosineSimilarity(dim=1, eps=1e-6) |
| |
| graph, _, __ = utils._model_to_graph(model, (x, y), |
| operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH) |
| iter = graph.nodes() |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "aten::cosine_similarity" |
| |
| def test_quantized_fallthrough(self): |
| # Test Quantized op |
| class QModule(torch.nn.Module): |
| def __init__(self): |
| super(QModule, self).__init__() |
| self.quant1 = torch.quantization.QuantStub() |
| self.dequant = torch.quantization.DeQuantStub() |
| |
| def forward(self, x): |
| res = self.quant1(x) |
| return self.dequant(res) |
| |
| model = QModule() |
| torch.backends.quantized.engine = "qnnpack" |
| pt_inputs = (torch.randn(1, 2, 3, 4)) |
| model.qconfig = torch.quantization.default_qconfig |
| q_model = torch.quantization.prepare(model, inplace=False) |
| q_model = torch.quantization.convert(q_model, inplace=False) |
| |
| q_model.eval() |
| output = q_model(*pt_inputs) |
| |
| graph, _, __ = utils._model_to_graph(q_model, pt_inputs, example_outputs=output, |
| operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH) |
| |
| iter = graph.nodes() |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "onnx::Constant" |
| assert next(iter).kind() == "aten::quantize_per_tensor" |
| assert next(iter).kind() == "aten::dequantize" |
| |
| def test_prim_fallthrough(self): |
| # Test prim op |
| class PrimModule(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def forward(self, x): |
| if isinstance(x, list): |
| y = x |
| else: |
| y = [x] |
| return y |
| |
| x = torch.tensor([2]) |
| model = PrimModule() |
| output = model(x) |
| graph, _, __ = utils._model_to_graph(model, (x,), example_outputs=output, |
| operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH) |
| iter = graph.nodes() |
| assert next(iter).kind() == "prim::ListConstruct" |
| |
| def test_custom_layer_tuple(self): |
| class CustomFunction(torch.autograd.Function): |
| @staticmethod |
| def symbolic(g, input): |
| return g.op('CustomNamespace::Custom', input, outputs=2) |
| |
| @staticmethod |
| def forward(ctx, input): |
| return input, input |
| |
| class Custom(torch.nn.Module): |
| def forward(self, input): |
| return CustomFunction.apply(input) |
| |
| model = Custom() |
| batch = torch.FloatTensor(1, 3) |
| |
| graph, _, _ = utils._model_to_graph(model, batch) |
| iter = graph.nodes() |
| assert next(iter).kind() == "CustomNamespace::Custom" |
| |
| @skipIfUnsupportedMinOpsetVersion(12) |
| def test_dropout_training_zero(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.dropout = torch.nn.Dropout(0.5) |
| |
| def forward(self, x): |
| dropout = self.dropout(x) |
| return dropout |
| |
| torch.manual_seed(0) |
| onnxruntime.set_seed(0) |
| |
| model = MyModule() |
| |
| # ensure there are no zeros in the input |
| x = torch.randn(10, 3, 128, 128) |
| y = x.numpy() |
| y_mask = np.where(y == 0, 1, y) |
| input = torch.from_numpy(y_mask) |
| nb_elements = torch.numel(input) |
| |
| model.train() |
| |
| f = io.BytesIO() |
| torch.onnx.export(model, (input,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name : input.cpu().numpy()} |
| ort_outs = ort_sess.run(None, ort_inputs) |
| y = model(input) |
| output = y.cpu().numpy() |
| |
| ort_mask = np.where(ort_outs[0] != 0, 1, 0) |
| pyt_mask = np.where(output != 0, 1, 0) |
| |
| ratio_pytorch = np.sum(pyt_mask) / nb_elements |
| ratio_ort = np.sum(ort_mask) / nb_elements |
| |
| np.testing.assert_allclose(ratio_pytorch, ratio_ort, rtol=0.01, atol=0.01) |
| |
| def test_fuse_conv_bn(self): |
| class Fuse(torch.nn.Module): |
| def __init__(self): |
| super(Fuse, self).__init__() |
| self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=True) |
| self.bn = torch.nn.BatchNorm2d(2) |
| |
| def forward(self, x): |
| out = self.conv(x) |
| return self.bn(out) |
| |
| x = torch.randn(2, 3, 2, 2, requires_grad=True) |
| graph, _, __ = utils._model_to_graph(Fuse(), (x, ), |
| do_constant_folding=True, |
| training=TrainingMode.EVAL) |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::BatchNormalization" |
| assert node.kind() == "onnx::Conv" |
| |
| assert len(list(graph.nodes())) == 1 |
| |
| def test_fuse_resnet18(self): |
| model = torchvision.models.resnet18(pretrained=True) |
| x = torch.randn(2, 3, 224, 224, requires_grad=True) |
| graph, _, __ = utils._model_to_graph(model, (x, ), |
| do_constant_folding=True) |
| |
| for node in graph.nodes(): |
| assert node.kind() != "onnx::BatchNormalization" |
| |
| def test_conv_bn(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.conv = torch.nn.Conv2d(3, 16, kernel_size=1, stride=2, padding=3, bias=True) |
| self.bn = torch.nn.BatchNorm2d(16, affine=True) |
| |
| def forward(self, x): |
| x = self.conv(x) |
| bn = self.bn(x) |
| return bn |
| |
| model = MyModule() |
| x = torch.randn(10, 3, 128, 128) |
| |
| f = io.BytesIO() |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name: x.cpu().numpy()} |
| ort_outs1 = ort_sess.run(None, ort_inputs) |
| |
| f = io.BytesIO() |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name: x.cpu().numpy()} |
| ort_outs2 = ort_sess.run(None, ort_inputs) |
| [np.testing.assert_allclose(ort_out1, ort_out2, atol=1e-7, rtol=0.001) for ort_out1, ort_out2 in zip(ort_outs1, ort_outs2)] |
| |
| def test_multiple_conv_bn(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
| self.conv2 = torch.nn.Conv2d(64, 2, kernel_size=1, stride=1, padding=0, bias=False) |
| self.conv3 = torch.nn.Conv2d(2, 2, kernel_size=3, stride=1, padding=1, bias=False) |
| self.bn = torch.nn.BatchNorm2d(64) |
| self.bn2 = torch.nn.BatchNorm2d(2) |
| self.relu = torch.nn.ReLU(inplace=True) |
| self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.bn(x) |
| x = self.relu(x) |
| x = self.maxpool(x) |
| x = self.conv2(x) |
| x = self.bn2(x) |
| x = self.relu(x) |
| x = self.conv3(x) |
| x = self.bn2(x) |
| x = self.relu(x) |
| return x |
| |
| model = MyModule() |
| x = torch.randn(2, 3, 224, 224) |
| |
| f = io.BytesIO() |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.TRAINING) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name: x.cpu().numpy()} |
| ort_outs1 = ort_sess.run(None, ort_inputs) |
| f = io.BytesIO() |
| torch.onnx.export(model, (x,), f, |
| opset_version=self.opset_version, training=torch.onnx.TrainingMode.EVAL) |
| ort_sess = onnxruntime.InferenceSession(f.getvalue()) |
| ort_inputs = {ort_sess.get_inputs()[0].name: x.cpu().numpy()} |
| ort_outs2 = ort_sess.run(None, ort_inputs) |
| [np.testing.assert_allclose(ort_out1, ort_out2, atol=1e-7, rtol=0.001) for ort_out1, ort_out2 in zip(ort_outs1, ort_outs2)] |
| |
| def test_onnx_function_substitution_pass(self): |
| |
| @torch.jit.script |
| def f(x : torch.Tensor, y : torch.Tensor): |
| z = x - y |
| return x + z |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| |
| def forward(self, x, y): |
| return f(x, y) |
| |
| model = MyModule() |
| input_1 = torch.tensor(11) |
| input_2 = torch.tensor(12) |
| _set_opset_version(self.opset_version) |
| _set_operator_export_type(OperatorExportTypes.ONNX) |
| graph, _, __ = utils._model_to_graph(MyModule(), (input_1, input_2), do_constant_folding=True, |
| operator_export_type=OperatorExportTypes.ONNX) |
| # Check that the prim::Constant node in the graph for representing the |
| # scripted function `f` is removed and the following prim::CallFunction |
| # is replced by inline graph, with onnx::Sub and onnx::Add nodes. |
| for node in graph.nodes(): |
| assert node.kind() != "prim::Constant" |
| assert len(list(graph.nodes())) == 2 # onnx::Sub and onnx::Add nodes only. |
| |
| # opset 10 tests |
| TestUtilityFuns_opset10 = type(str("TestUtilityFuns_opset10"), |
| (TestCase,), |
| dict(TestUtilityFuns.__dict__, opset_version=10)) |
| |
| |
| # opset 11 tests |
| TestUtilityFuns_opset11 = type(str("TestUtilityFuns_opset11"), |
| (TestCase,), |
| dict(TestUtilityFuns.__dict__, opset_version=11)) |
| |
| # opset 12 tests |
| TestUtilityFuns_opset12 = type(str("TestUtilityFuns_opset12"), |
| (TestCase,), |
| dict(TestUtilityFuns.__dict__, opset_version=12)) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |