blob: 7e77d93cdcd6afa96406f8d804f64843e3d02080 [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import os
import sys
from typing import Any, Dict, List, NamedTuple, Optional, Tuple # noqa: F401
import torch
from torch.jit._monkeytype_config import _IS_MONKEYTYPE_INSTALLED
from torch.testing._internal.common_utils import NoTest
from torch.testing._internal.jit_utils import JitTestCase, make_global
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if not _IS_MONKEYTYPE_INSTALLED:
print(
"monkeytype is not installed. Skipping tests for Profile-Directed Typing",
file=sys.stderr,
)
JitTestCase = NoTest # type: ignore[misc, assignment] # noqa: F811
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestPDT(JitTestCase):
"""
A suite of tests for profile directed typing in TorchScript.
"""
def test_nn_module(self):
class TestPDTModel(torch.nn.Module):
def forward(self, x) -> Any:
if isinstance(x, int):
return x + 1
elif isinstance(x, float):
return x - 1
else:
return x
make_global(TestPDTModel)
pdt_model = TestPDTModel()
inp: List[Tuple[Any, ...]] = [
(20,),
(2.7,),
(False,),
]
scripted_pdt_model = torch.jit.script(
pdt_model, example_inputs={pdt_model: inp}
)
self.assertEqual(scripted_pdt_model(50), pdt_model(50))
self.assertEqual(scripted_pdt_model(1.8), pdt_model(1.8))
self.assertTrue(scripted_pdt_model(True), pdt_model(True))
def test_nested_nn_module_class(self):
class NestedPDTInner(torch.nn.Module):
def forward(self, x):
if isinstance(x, int):
return x * 10
return x
class NestedModulePDTWrapper(torch.nn.Module):
def __init__(self, inner):
super().__init__()
self.inner = inner
def forward(self, x):
return self.inner(x)
make_global(NestedPDTInner, NestedModulePDTWrapper)
inner_pdt_model = NestedPDTInner()
wrapped_pdt_model = NestedModulePDTWrapper(inner_pdt_model)
inp: List[Tuple[Any, ...]] = [(20,), (False,)]
scripted_pdt_model = torch.jit.script(
wrapped_pdt_model, example_inputs={wrapped_pdt_model: inp}
)
self.assertEqual(scripted_pdt_model(30), wrapped_pdt_model(30))
self.assertEqual(scripted_pdt_model(1.9), wrapped_pdt_model(1.9))
self.assertTrue(scripted_pdt_model(True), wrapped_pdt_model(True))
def test_nested_nn_module_class_with_args(self):
class NestedModulePDTInner(torch.nn.Module):
def forward(self, x, y):
if isinstance(x, int):
return x * 10 + y
return x
class NestedModulePDTOuter(torch.nn.Module):
def __init__(self, inner):
super().__init__()
self.inner = inner
def forward(self, x):
return self.inner(x, 20)
make_global(NestedModulePDTInner, NestedModulePDTOuter)
inner_pdt_model = NestedModulePDTInner()
outer_pdt_model = NestedModulePDTOuter(inner_pdt_model)
inner_input: List[Tuple[Any, ...]] = [
(10, 10),
(1.9, 20),
]
outer_input: List[Tuple[Any, ...]] = [(20,), (False,)]
scripted_pdt_model = torch.jit.script(
outer_pdt_model,
example_inputs={
inner_pdt_model: inner_input,
outer_pdt_model: outer_input,
},
)
self.assertEqual(scripted_pdt_model(30), outer_pdt_model(30))
self.assertEqual(scripted_pdt_model(1.9), outer_pdt_model(1.9))
self.assertTrue(scripted_pdt_model(True), outer_pdt_model(True))
def test_nested_function_in_forward(self):
class NestedFunctionInForward(torch.nn.Module):
def forward(self, x):
return self.fun(x) + 10
def fun(self, x):
if isinstance(x, bool):
return 0
elif isinstance(x, int):
return x + 1
return 0
make_global(NestedFunctionInForward)
pdt_model = NestedFunctionInForward()
inp: List[Tuple[Any, ...]] = [(-1,), (False,)]
scripted_pdt_model = torch.jit.script(
pdt_model, example_inputs={pdt_model: inp}
)
self.assertEqual(scripted_pdt_model(30), pdt_model(30))
self.assertEqual(scripted_pdt_model(True), pdt_model(True))
def test_nn_module_with_export_function(self):
class TestModelWithExport(torch.nn.Module):
@torch.jit.export
def fn(self, x, y) -> Any:
assert not (isinstance(x, bool) and isinstance(y, bool))
if isinstance(x, int) and isinstance(y, int):
return x + y
elif isinstance(x, float) and isinstance(y, float):
return x - y
else:
return -1
make_global(TestModelWithExport)
pdt_model = TestModelWithExport()
inp: List[Tuple[Any, ...]] = [
(
20,
10,
),
(
2.7,
8.9,
),
]
scripted_pdt_model = torch.jit.script(
pdt_model, example_inputs={pdt_model.fn: inp}
)
self.assertEqual(scripted_pdt_model.fn(10, 90), pdt_model.fn(10, 90))
self.assertEqual(scripted_pdt_model.fn(1.8, 2.2), pdt_model.fn(1.8, 2.2))
self.assertTrue(
scripted_pdt_model.fn(torch.ones(1), 2), pdt_model.fn(torch.ones(1), 2)
)
def test_class_methods(self):
class PDTModel:
def test_sum(self, a):
return sum(a)
make_global(PDTModel)
pdt_model = PDTModel()
inp: List[Tuple[Any, ...]] = [
(
[
10,
20,
],
),
]
scripted_pdt_model = torch.jit.script(
PDTModel, example_inputs={pdt_model.test_sum: inp}
)
script_model = scripted_pdt_model()
self.assertEqual(
script_model.test_sum(
[
10,
20,
30,
],
),
pdt_model.test_sum(
[
10,
20,
30,
],
),
)
def test_class_with_multiple_methods(self):
class PDTModelWithManyMethods:
def test_list_to_dict(self, a):
new_dictionary: Dict[float, bool] = {}
for element in a:
new_dictionary[element] = True
return new_dictionary
def test_substring(self, a, b):
return b in a
make_global(PDTModelWithManyMethods)
pdt_model = PDTModelWithManyMethods()
list_inp: List[Tuple[Any, ...]] = [
(
[
1.2,
2.3,
],
),
]
str_inp: List[Tuple[Any, ...]] = [
(
"abc",
"b",
),
]
scripted_pdt_model = torch.jit.script(
PDTModelWithManyMethods,
example_inputs={
pdt_model.test_list_to_dict: list_inp,
pdt_model.test_substring: str_inp,
},
)
script_model = scripted_pdt_model()
self.assertEqual(
script_model.test_list_to_dict(
[
1.1,
2.2,
3.3,
],
),
pdt_model.test_list_to_dict(
[
1.1,
2.2,
3.3,
],
),
)
self.assertEqual(
script_model.test_substring(
"helloworld",
"world",
),
pdt_model.test_substring(
"helloworld",
"world",
),
)
self.assertEqual(
script_model.test_substring(
"helloworld",
"def",
),
pdt_model.test_substring(
"helloworld",
"def",
),
)
def test_multiple_class_with_same_method(self):
class PDTModelOne:
def test_find(self, a, b):
return b in a.keys()
class PDTModelTwo:
def test_find(self, a, b):
return b in a
make_global(PDTModelOne, PDTModelTwo)
pdt_model_one = PDTModelOne()
pdt_model_two = PDTModelTwo()
dict_inp: List[Tuple[Any, ...]] = [
(
{
1.2: True,
2.3: False,
},
1.2,
),
]
list_inp: List[Tuple[Any, ...]] = [
(
[
"abc",
"b",
],
"c",
),
]
scripted_pdt_model_one = torch.jit.script(
PDTModelOne, example_inputs={pdt_model_one.test_find: dict_inp}
)
scripted_pdt_model_two = torch.jit.script(
PDTModelTwo, example_inputs={pdt_model_two.test_find: list_inp}
)
script_model_one, script_model_two = (
scripted_pdt_model_one(),
scripted_pdt_model_two(),
)
self.assertEqual(
script_model_one.test_find(
{
1.1: True,
2.2: True,
3.3: False,
},
4.4,
),
pdt_model_one.test_find(
{
1.1: True,
2.2: True,
3.3: False,
},
4.4,
),
)
self.assertEqual(
script_model_two.test_find(
[
"hello",
"world",
],
"world",
),
pdt_model_two.test_find(
[
"hello",
"world",
],
"world",
),
)
def test_pdt(self):
def test_sum(a, b):
return a + b
make_global(test_sum)
scripted_fn_add = torch.jit.script(test_sum, example_inputs=[(3, 4)])
self.assertEqual(scripted_fn_add(10, 2), test_sum(10, 2))
def test_sub(a, b):
return a - b
make_global(test_sub)
scripted_fn_sub = torch.jit.script(test_sub, example_inputs=[(3.9, 4.10)])
self.assertEqual(scripted_fn_sub(6.5, 2.9), test_sub(6.5, 2.9))
def test_mul(a, b):
return a * b
make_global(test_mul)
scripted_fn_mul = torch.jit.script(test_mul, example_inputs=[(-10, 9)])
self.assertEqual(scripted_fn_mul(-1, 3), test_mul(-1, 3))
def test_args_complex(real, img):
return torch.complex(real, img)
make_global(test_args_complex)
scripted_fn_complex = torch.jit.script(
test_args_complex, example_inputs=[(torch.rand(3, 4), torch.rand(3, 4))]
)
arg1, arg2 = torch.rand(3, 4), torch.rand(3, 4)
self.assertEqual(scripted_fn_complex(arg1, arg2), test_args_complex(arg1, arg2))
def test_bool(a):
if a:
return -1
else:
return 0
make_global(test_bool)
scripted_fn_bool = torch.jit.script(test_bool, example_inputs=[(True,)])
self.assertEqual(scripted_fn_bool(True), test_bool(True))
def test_str(a):
if a == "":
return False
else:
return True
make_global(test_str)
scripted_fn_str = torch.jit.script(test_str, example_inputs=[("",)])
self.assertEqual(scripted_fn_str("abc"), test_str("abc"))
def test_pdt_list_and_tuple(self):
def test_list_and_tuple(a):
return sum(a)
make_global(test_list_and_tuple)
scripted_fn_float_list_input = torch.jit.script(
test_list_and_tuple, example_inputs=[([4.9, 8.9],)]
)
self.assertEqual(
scripted_fn_float_list_input([11.9, 7.6]), test_list_and_tuple([11.9, 7.6])
)
scripted_fn_bool_list_input = torch.jit.script(
test_list_and_tuple, example_inputs=[([True, False, True],)]
)
self.assertEqual(
scripted_fn_bool_list_input([True, True, True]),
test_list_and_tuple([True, True, True]),
)
scripted_fn_int_list_input = torch.jit.script(
test_list_and_tuple, example_inputs=[([3, 4, 5],)]
)
self.assertEqual(
scripted_fn_int_list_input([1, 2, 3]), test_list_and_tuple([1, 2, 3])
)
scripted_fn_float_tuple_input = torch.jit.script(
test_list_and_tuple, example_inputs=[((4.9, 8.9),)]
)
self.assertEqual(
scripted_fn_float_tuple_input((11.9, 7.6)), test_list_and_tuple((11.9, 7.6))
)
scripted_fn_bool_tuple_input = torch.jit.script(
test_list_and_tuple, example_inputs=[((True, False, True),)]
)
self.assertEqual(
scripted_fn_bool_tuple_input((True, True, True)),
test_list_and_tuple((True, True, True)),
)
scripted_fn_int_tuple_input = torch.jit.script(
test_list_and_tuple, example_inputs=[((3, 4, 5),)]
)
self.assertEqual(
scripted_fn_int_tuple_input((1, 2, 3)), test_list_and_tuple((1, 2, 3))
)
def test_nested_list_and_tuple(self):
def test_nested_list(inp):
return [sum(v) for v in inp]
def test_nested_tuple(inp):
ans = 0.0
for tup in inp:
for val in tup:
if val > 0:
ans *= val
return ans
make_global(test_nested_list, test_nested_tuple)
list_inp = [
[
1,
2,
3,
],
[
5,
6,
7,
],
]
scripted_fn = torch.jit.script(
test_nested_list,
example_inputs=[
(list_inp,),
],
)
inp = [
[
0,
4,
7,
],
[
8,
11,
],
[
6,
-1,
-20,
],
]
self.assertEqual(
scripted_fn(
inp,
),
test_nested_list(
inp,
),
)
list_inp = (
[
1,
2,
3,
],
[
5,
6,
7,
],
)
scripted_fn = torch.jit.script(
test_nested_list,
example_inputs=[
(list_inp,),
],
)
inp = (
[
0,
4,
7,
],
[
8,
11,
],
[
6,
-1,
-20,
],
)
self.assertEqual(
scripted_fn(
inp,
),
test_nested_list(
inp,
),
)
tup_inp = [
(
1.0,
2.6,
3.7,
),
(
5.7,
6.1,
1.7,
),
]
scripted_fn = torch.jit.script(
test_nested_tuple,
example_inputs=[
(tup_inp,),
],
)
inp = [
(
1.0,
4.1,
7.4,
),
(
4.8,
1.1,
-1.2,
),
(
6.3,
-1.3,
-2.0,
),
]
self.assertEqual(
scripted_fn(
inp,
),
test_nested_tuple(
inp,
),
)
tup_inp = (
(
True,
False,
True,
),
(
False,
False,
False,
),
)
scripted_fn = torch.jit.script(
test_nested_tuple,
example_inputs=[
(tup_inp,),
],
)
inp = (
(
True,
True,
True,
),
(
False,
False,
True,
),
)
self.assertEqual(
scripted_fn(
inp,
),
test_nested_tuple(
inp,
),
)
def test_pdt_dict(self):
def test_dict(a):
return a["foo"]
def test_dict_int_list(a):
return a[1]
make_global(test_dict, test_dict_int_list)
str_bool_inp = {"foo": True, "bar": False}
scripted_fn = torch.jit.script(test_dict, example_inputs=[(str_bool_inp,)])
self.assertEqual(
scripted_fn(
{"foo": False, "bar": True},
),
test_dict(
{"foo": False, "bar": True},
),
)
str_list_inp = {0: [True, False], 1: [False, True]}
scripted_fn = torch.jit.script(
test_dict_int_list, example_inputs=[(str_list_inp,)]
)
self.assertEqual(
scripted_fn(
{0: [False, False], 1: [True, True]},
),
test_dict_int_list(
{0: [False, False], 1: [True, True]},
),
)
def test_any(self):
def test_multiple_types(a):
assert not isinstance(a, bool)
return a
def test_multiple_type_refinement(a):
if isinstance(a, bool):
return 1
elif isinstance(a, int):
return 1 + a
elif isinstance(a, float):
return 1 + int(a)
else:
return -1
make_global(test_multiple_types, test_multiple_type_refinement)
scripted_fn = torch.jit.script(
test_multiple_types, example_inputs=[(1,), ("abc",), (8.9,), ([3, 4, 5],)]
)
self.assertEqual(scripted_fn(10), test_multiple_types(10))
self.assertEqual(scripted_fn("def"), test_multiple_types("def"))
self.assertEqual(scripted_fn(7.89999), test_multiple_types(7.89999))
self.assertEqual(scripted_fn([10, 11, 14]), test_multiple_types([10, 11, 14]))
scripted_fn = torch.jit.script(
test_multiple_type_refinement,
example_inputs=[
(1,),
("abc",),
(8.9,),
([3, 4, 5],),
(True,),
({"a": True},),
],
)
self.assertEqual(scripted_fn(10), test_multiple_type_refinement(10))
self.assertEqual(scripted_fn("def"), test_multiple_type_refinement("def"))
self.assertEqual(scripted_fn(7.89999), test_multiple_type_refinement(7.89999))
self.assertEqual(
scripted_fn([10, 11, 14]), test_multiple_type_refinement([10, 11, 14])
)
self.assertEqual(scripted_fn(False), test_multiple_type_refinement(False))
self.assertEqual(
scripted_fn({"abc": True, "def": False}),
test_multiple_type_refinement({"abc": True, "def": False}),
)
def test_class_as_profiled_types(self):
class UserDefinedClass:
def fn(self, b) -> Any:
assert b is not None
if isinstance(b, int):
return b if b > 0 else -1
elif isinstance(b, float):
return b if b > 0.0 else -1.0
return 0
def test_model(a, m):
assert not isinstance(a, bool)
return m.fn(a)
make_global(UserDefinedClass, test_model)
user_class = UserDefinedClass()
scripted_fn = torch.jit.script(
test_model,
example_inputs=[
(
10,
user_class,
),
(
10.9,
user_class,
),
],
)
self.assertEqual(
scripted_fn(
100,
user_class,
),
test_model(100, user_class),
)
self.assertEqual(
scripted_fn(
1.9,
user_class,
),
test_model(1.9, user_class),
)
def test_class_with_args_as_profiled_types(self):
class ClassWithArgs:
def __init__(self, a: bool):
self.a = a
def fn(self, b):
if self.a:
return b
else:
return -1
def test_model_with_args(a, m):
assert not isinstance(a, bool)
return m.fn(a)
make_global(ClassWithArgs, test_model_with_args)
user_class = ClassWithArgs(False)
scripted_fn = torch.jit.script(
test_model_with_args,
example_inputs=[
(
10,
user_class,
),
(
10.9,
user_class,
),
],
)
self.assertEqual(
scripted_fn(
100,
ClassWithArgs(True),
),
test_model_with_args(100, ClassWithArgs(True)),
)
def test_nn_parameter_as_arg(self):
class TestNNParameter(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.inp = torch.nn.Parameter(torch.ones(2, 3))
def add_nn_parameter_with_int(self, x, y):
return torch.add(x, y)
def forward(self, y):
return self.add_nn_parameter_with_int(self.inp, y)
make_global(TestNNParameter)
pdt_model = TestNNParameter()
scripted_fn = torch.jit.script(
pdt_model,
example_inputs={
pdt_model: [
(10,),
],
},
)
self.assertEqual(scripted_fn(20), pdt_model(20))
def test_fx_tracing_with_typing(self):
class FXModelOutput(NamedTuple):
result: List[int]
class FXModel(torch.nn.Module):
def forward(self, a) -> FXModelOutput:
result = FXModelOutput(result=a)
return result
make_global(FXModel, FXModelOutput)
pdt_model = FXModel()
scripted_fn = torch.jit.script(
pdt_model,
example_inputs={
pdt_model: [
(
[
10,
20,
],
),
],
},
)
self.assertEqual(scripted_fn([20]), pdt_model([20]))
def test_nonetype_as_optional_of_type(self):
def test_none(a) -> Any:
if a is None:
return 0
else:
return a + torch.ones(1)
make_global(test_none)
scripted_fn = torch.jit.script(test_none, example_inputs=[(None,), (10.6,)])
self.assertEqual(
scripted_fn(
30.9,
),
test_none(
30.9,
),
)
scripted_fn = torch.jit.script(test_none, example_inputs=[(None,), (10,)])
self.assertEqual(
scripted_fn(
2,
),
test_none(
2,
),
)
scripted_fn = torch.jit.script(
test_none, example_inputs=[(None,), (torch.Tensor(1),)]
)
self.assertEqual(
scripted_fn(
torch.ones(1),
),
test_none(
torch.ones(1),
),
)