blob: 03744b7a8ef8fe4ad63c8d27597d2e2fd73b933b [file] [log] [blame]
# Owner(s): ["module: functorch"]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import functools
import itertools
import unittest
from common_utils import (
check_vmap_fallback,
decorate,
expectedFailureIf,
generate_vmap_inputs,
get_fallback_and_vmap_exhaustive,
is_batch_norm_training,
is_valid_inplace_sample_input,
loop,
loop2,
opsToleranceOverride,
skip,
skipOps,
tol1,
tol2,
xfail,
)
from functorch_additional_op_db import additional_op_db
import torch
import torch.autograd.forward_ad as fwAD
from functorch import grad, jacfwd, jacrev, vjp, vmap
from torch import Tensor
from torch._functorch.eager_transforms import _as_tuple, jvp
from torch.testing._internal.autograd_function_db import autograd_function_db
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
tol,
toleranceOverride,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import (
is_iterable_of_tensors,
IS_MACOS,
IS_X86,
noncontiguous_like,
parametrize,
run_tests,
runOnRocm,
skipIfRocm,
TEST_WITH_ASAN,
TEST_WITH_ROCM,
TestCase,
unMarkDynamoStrictTest,
)
from torch.testing._internal.opinfo.core import SampleInput
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
aten = torch.ops.aten
# Version of autograd.grad with some differences:
# - pytree inputs is allowed (but leaves of the pytree have to all
# be tensors)
# - if an input is not used as part of derivatives, we will return a
# zero-filled tensor for the result
def _autograd_grad(
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
inputs, inputs_spec = tree_flatten(inputs)
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
if grad_outputs is None:
diff_outputs = tuple(out for out in outputs if out.requires_grad)
else:
diff_grad_outputs = [
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
]
if len(diff_grad_outputs) == 0:
diff_outputs, grad_outputs = (), ()
else:
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=True,
)
result = []
grad_inputs_iter = iter(grad_inputs)
for inp in inputs:
if inp.requires_grad:
grad_input = next(grad_inputs_iter)
if grad_input is None:
result.append(torch.zeros_like(inp))
else:
result.append(grad_input)
else:
result.append(torch.zeros_like(inp))
return tree_unflatten(result, inputs_spec)
def diff_arg(arg, requires_grad=True):
def is_differentiable_arg(arg):
if requires_grad:
return arg.requires_grad
else:
return arg.is_floating_point() or arg.is_complex()
if is_iterable_of_tensors(arg):
if all(is_differentiable_arg(a) for a in arg):
return True
if all(not is_differentiable_arg(a) for a in arg):
return False
raise RuntimeError("NYI: The test runner can't handle this")
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
):
flat_args, args_spec = tree_flatten(args)
diff_argnums = tuple(
i
for i, arg in enumerate(flat_args)
if diff_arg(arg, requires_grad=requires_grad)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
result = tuple(r for r in result if torch.is_floating_point(r))
assert len(result) > 0
return result
return wrapped, primals
# TODO: consolidate with normalize_op_input_output2
def normalize_op_input_output3(
f, args, kwargs, sample_args, output_process_fn_grad=None
):
flat_args, args_spec = tree_flatten(args)
flat_sample_args = pytree.tree_leaves(sample_args)
diff_argnums = tuple(
i
for i, (arg, sample) in enumerate(zip(flat_args, flat_sample_args))
if diff_arg(sample, requires_grad=True)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
result = tuple(r for r in result if torch.is_floating_point(r))
assert len(result) > 0
return result
return wrapped, primals
def normalize_op_input_output(f, sample, requires_grad=True):
args = tuple([sample.input] + list(sample.args))
return normalize_op_input_output2(
f,
args,
sample.kwargs,
sample.output_process_fn_grad,
requires_grad=requires_grad,
)
def ref_vjp(f, *primals):
result = f(*primals)
def wrapped(cotangents):
return _autograd_grad(_as_tuple(result), primals, _as_tuple(cotangents))
return result, wrapped
def simulate_jvp(f, primals, tangents):
primals_out, tangents_out = torch.autograd.functional.jvp(f, primals, tangents)
return primals_out, tangents_out
def ref_jvp(f, primals, tangents):
with fwAD.dual_level():
duals = tuple(fwAD.make_dual(p, t) for p, t in zip(primals, tangents))
result_duals = f(*duals)
result_duals, spec = tree_flatten(result_duals)
primals_out, tangents_out = zip(*(fwAD.unpack_dual(d) for d in result_duals))
return tree_unflatten(primals_out, spec), tree_unflatten(tangents_out, spec)
def get_sample_cotangents(f, sample):
fn, primals = normalize_op_input_output(f, sample)
output = fn(*primals)
return tree_map(torch.randn_like, output)
# returns a new function g(*args, *cotangents)
# that computes vjps and (*args, cotangents)
def get_vjp_fn_and_args_with_cotangents(f, sample, cotangents):
args = tuple([sample.input] + list(sample.args))
kwargs = sample.kwargs
flat_args, args_spec = tree_flatten(args)
flat_cotangents, cotangents_spec = tree_flatten(cotangents)
@functools.wraps(f)
def wrapped(*args):
assert len(args) == len(flat_args) + len(flat_cotangents)
actual_args = args[: len(flat_args)]
cotangents = args[len(flat_args) :]
actual_args = tree_unflatten(actual_args, args_spec)
cotangents = tree_unflatten(cotangents, cotangents_spec)
fn, primals = normalize_op_input_output3(
f, actual_args, kwargs, flat_args, sample.output_process_fn_grad
)
_, vjp_fn = vjp(fn, *primals)
return vjp_fn(cotangents)
return wrapped, tuple(flat_args + flat_cotangents)
# Returns a new function g(*args, *cotangents) that computes vjps and
# sample (*args, *cotangents)
def get_vjpfull_variant(f, sample):
fn, primals = normalize_op_input_output(f, sample)
return _get_vjpfull_variant(fn, primals)
def get_vjpfull_variant2(f, args, kwargs):
fn, primals = normalize_op_input_output2(f, args, kwargs)
return _get_vjpfull_variant(fn, primals)
def _get_vjpfull_variant(fn, primals):
result = fn(*primals)
cotangents = _as_tuple(
tree_map(lambda x: torch.randn_like(x, requires_grad=True), result)
)
num_primals = len(primals)
args = (*primals, *cotangents)
@functools.wraps(fn)
def wrapped(*args):
primals = args[:num_primals]
cotangents = args[num_primals:]
result, vjp_fn = vjp(fn, *primals)
if isinstance(result, torch.Tensor):
assert len(cotangents) == 1
cotangents = cotangents[0]
return vjp_fn(cotangents)
return wrapped, args
def get_jvp_variant(f, sample):
# We want this higher-order variant of jvp, so that it can
# be used to wrap vmap
fn, primals = normalize_op_input_output(f, sample, requires_grad=False)
tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals))
@functools.wraps(f)
def wrapped(*args):
tangents = args
primals_out, tangents_out = jvp(fn, primals, tangents)
if isinstance(primals_out, torch.Tensor):
return (primals_out, tangents_out)
else:
flat_primals_out = pytree.tree_leaves(primals_out)
flat_tangents_out = pytree.tree_leaves(tangents_out)
return tuple(flat_primals_out + flat_tangents_out)
return wrapped, tangents
def get_jvp_variant_primals_tangents2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=False
):
fn, primals = normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad, requires_grad
)
tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals))
return _get_jvp_variant(fn, primals, tangents)
def get_jvp_variant_primals_tangents(f, sample):
# We want this higher-order variant of jvp, so that it can
# be used to wrap vmap
fn, primals = normalize_op_input_output(f, sample, requires_grad=False)
tangents = _as_tuple(tree_map(lambda x: torch.randn_like(x), primals))
return _get_jvp_variant(fn, primals, tangents)
def _get_jvp_variant(fn, primals, tangents):
@functools.wraps(fn)
def wrapped(*args):
primals_in = args[: len(primals)]
tangents_in = args[len(primals) :]
primals_out, tangents_out = jvp(fn, primals_in, tangents_in)
if isinstance(primals_out, torch.Tensor):
return (primals_out, tangents_out)
else:
flat_primals_out = pytree.tree_leaves(primals_out)
flat_tangents_out = pytree.tree_leaves(tangents_out)
return tuple(flat_primals_out + flat_tangents_out)
return wrapped, primals + tangents
def is_inplace(op, variant):
if hasattr(variant, "__wrapped__"):
return variant.__wrapped__ is op.get_inplace()
return variant is op.get_inplace()
vjp_fail = {
xfail("tensor_split"), # data_ptr composite compliance
# Very minor accuracy issue on ROCm
decorate("nn.functional.scaled_dot_product_attention", decorator=skipIfRocm),
}
aliasing_ops = {
"T",
"broadcast_to",
"conj",
"contiguous",
"diagonal", # linalg.diagonal is an alias
"expand",
"flatten",
"imag",
"mH", # adjoint is an alias
"mT",
"movedim", # moveaxis is an alias
"narrow",
"permute",
"positive",
# 'ravel', is composite implicit autograd and may call clone
"real",
"reshape",
"resolve_conj",
"resolve_neg",
"select",
"squeeze",
"transpose", # swapdims and swapaxes are aliases
"unflatten",
"unfold",
"unsqueeze",
"view",
"view_as",
"view_as_complex",
"view_as_real",
}
aliasing_ops_list_return = {
"chunks",
"dsplit",
"hsplit",
"split",
"unbind",
"vsplit",
# 'tensor_split' not composite compliant, see vjp_fail
}
skip_noncontig = {
"_batch_norm_with_update",
"as_strided_copy",
}
@unittest.skipIf(TEST_WITH_ASAN, "tests time out with asan, are probably redundant")
@unMarkDynamoStrictTest
class TestOperators(TestCase):
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_grad",
vjp_fail.union(
{
xfail(
"chalf", "", device_type="cpu"
), # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
xfail(
"sparse.sampled_addmm", ""
), # RuntimeError: Sparse CSR tensors do not have strides
xfail(
"sparse.mm", "reduce"
), # RuntimeError: Sparse CSR tensors do not have strides
# Non-contiguous Bugs
#
# AssertionError: Tensor-likes are not close!
xfail("_softmax_backward_data", device_type="cpu"),
xfail("as_strided"),
xfail("as_strided", "partial_views"),
# RuntimeError: !self.requires_grad() || self.is_contiguous()
xfail("as_strided_scatter"),
# RuntimeError: Tensor must have a last dimension with stride 1
xfail("view_as_complex"),
# query: last dimension must be contiguous
# Fused attention kernels require last dim to be contiguous
decorate(
"nn.functional.scaled_dot_product_attention",
decorator=expectedFailureIf(not TEST_WITH_ROCM),
), # Works on ROCm
xfail("torch.ops.aten._flash_attention_forward"),
xfail("torch.ops.aten._efficient_attention_forward"),
# RuntimeError: Expected contiguous tensor, but got
# non-contiguous tensor for argument #2 'grad_output'
decorate(
"_batch_norm_with_update",
decorator=expectedFailureIf(TEST_WITH_ROCM),
device_type="cuda",
),
}
),
)
@opsToleranceOverride(
"TestOperators",
"test_grad",
(
tol1(
"nn.functional.binary_cross_entropy_with_logits",
{torch.float32: tol(atol=1e-04, rtol=1e-04)},
),
tol1("masked.cumprod", {torch.float32: tol(atol=1e-05, rtol=1e-05)}),
tol1("svd_lowrank", {torch.float32: tol(atol=3e-04, rtol=3e-04)}),
tol1(
"linalg.multi_dot",
{torch.float32: tol(atol=1e-05, rtol=8e-04)},
device_type="cuda",
),
tol1(
"linalg.tensorsolve",
{torch.float32: tol(atol=3e-04, rtol=3e-04)},
device_type="cuda",
),
tol1(
"nn.functional.multi_head_attention_forward",
{torch.float32: tol(atol=8e-04, rtol=1e-03)},
),
tol1(
"__rmatmul__",
{torch.float32: tol(atol=3e-04, rtol=3e-04)},
device_type="cuda",
),
tol1(
"matmul",
{torch.float32: tol(atol=3e-04, rtol=3e-04)},
device_type="cuda",
),
tol1(
"pca_lowrank",
{torch.float32: tol(atol=3e-05, rtol=4e-06)},
device_type="cpu",
),
),
)
def test_grad(self, device, dtype, op):
if op.name in vjp_fail:
self.skipTest("Skipped; Expected failures")
return
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
if is_inplace(op, op.get_op()):
self.skipTest("Skipped for redundancy. test_vjp handles in-place testing.")
return
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
if op.name not in skip_noncontig:
noncontig_sample = sample.noncontiguous()
noncontig_args = [noncontig_sample.input] + list(noncontig_sample.args)
noncontig_kwargs = noncontig_sample.kwargs
diff_argnums = tuple(i for i, arg in enumerate(args) if diff_arg(arg))
assert len(diff_argnums) > 0
diff_args = tuple(args[i] for i in diff_argnums)
def wrapped_fn(*args, **kwargs):
result = op(*args, **kwargs)
if sample.output_process_fn_grad is not None:
result = sample.output_process_fn_grad(result)
def abs_if_complex(t):
if t.dtype.is_complex:
return t.abs()
return t
# Reduce into single value for grad
if isinstance(result, torch.Tensor):
return abs_if_complex(result.sum())
result = sum(abs_if_complex(res.sum()) for res in result)
return result
result = grad(wrapped_fn, diff_argnums)(*args, **kwargs)
expected = _autograd_grad(_as_tuple(wrapped_fn(*args, **kwargs)), diff_args)
self.assertEqual(result, expected)
if op.name not in skip_noncontig:
result_noncontig = grad(wrapped_fn, diff_argnums)(
*noncontig_args, **noncontig_kwargs
)
self.assertEqual(result_noncontig, expected)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_jvp",
set(
{
# Composite ops that do bad things. Need to be fixed in PyTorch core.
# RuntimeError: Cannot access data pointer of Tensor that doesn't have storage
xfail("tensor_split"),
# BUG: silent incorrectness: runs and produces numerical differences
skip("nn.functional.max_unpool1d"), # fails everywhere except on mac
skip(
"nn.functional.max_unpool2d"
), # fails everywhere except on windows
skip("nn.functional.max_unpool3d"), # fails everywhere except on mac
xfail(
"native_batch_norm"
), # TODO: fails comparing None to tensor of 0s for saved_mean/var tangents
xfail(
"_native_batch_norm_legit"
), # TODO: fails comparing None to tensor of 0s for saved_mean/var tangents
xfail(
"_batch_norm_with_update"
), # TODO: fails comparing None to tensor of 0s for saved_mean/var tangents
xfail("nn.functional.scaled_dot_product_attention"),
xfail("torch.ops.aten._flash_attention_forward"),
xfail("torch.ops.aten._efficient_attention_forward"),
xfail(
"nn.functional.rrelu"
), # in-place test errors out with no formula implemented
xfail(
"NumpyExpMarkDirtyAutogradFunction"
), # TODO: https://github.com/pytorch/pytorch/issues/91280
# --- Non-Contiguous Failures! ---
# This is expected to fail as the operator
# expects last dim to have stride=1
xfail("view_as_complex"),
# BUG
# AssertionError: Tensor-likes are not close!
xfail("as_strided"),
xfail("as_strided", "partial_views"),
xfail("as_strided_scatter"),
decorate(
"linalg.det",
"singular",
decorator=expectedFailureIf(IS_MACOS and IS_X86),
),
}
),
)
@opsToleranceOverride(
"TestOperators",
"test_jvp",
(
tol1(
"nn.functional.conv_transpose3d",
{torch.float32: tol(atol=1e-04, rtol=1.3e-06)},
device_type="cuda",
),
tol1(
"linalg.tensorsolve",
{torch.float32: tol(atol=1e-04, rtol=1.3e-05)},
device_type="cuda",
),
tol1(
"masked.prod",
{torch.float32: tol(atol=1e-05, rtol=1.3e-05)},
device_type="cuda",
),
tol1(
"nn.functional.binary_cross_entropy_with_logits",
{torch.float32: tol(atol=4e-04, rtol=4e-04)},
),
tol1(
"nn.functional.batch_norm", {torch.float32: tol(atol=4e-05, rtol=5e-05)}
),
tol1("nn.functional.conv2d", {torch.float32: tol(atol=4e-05, rtol=5e-05)}),
tol1("svd_lowrank", {torch.float32: tol(atol=5e-05, rtol=5e-05)}),
tol1("pca_lowrank", {torch.float32: tol(atol=5e-05, rtol=5e-05)}),
tol1(
"nn.functional.multi_head_attention_forward",
{torch.float32: tol(atol=6e-05, rtol=2e-05)},
),
tol2(
"linalg.pinv", "hermitian", {torch.float32: tol(atol=5e-5, rtol=2e-5)}
),
),
)
def test_jvp(self, device, dtype, op):
# TODO: get rid of vjp_decomp when we add decomposition support to
# PyTorch's forward-mode ad. Currently the decomposition support only
# works for functorch.jvp
VJP_DECOMP = {
"nn.functional.logsigmoid",
}
if op.name in VJP_DECOMP:
fixme_ref_jvp_local = simulate_jvp
else:
fixme_ref_jvp_local = ref_jvp
if not op.supports_forward_ad and op.name not in VJP_DECOMP:
self.skipTest("Skipped! Forward AD not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
outplace_variant = op if not is_inplace(op, op.get_op()) else None
inplace_variant = op.inplace_variant if op.supports_inplace_autograd else None
for sample in samples:
if outplace_variant:
self.jvp_opinfo_test(
outplace_variant,
sample,
sample.output_process_fn_grad,
clone_inputs=False,
fixme_ref_jvp_local=fixme_ref_jvp_local,
test_noncontig=op.name not in skip_noncontig,
)
if is_valid_inplace_sample_input(sample, op, inplace_variant):
self.jvp_opinfo_test(
inplace_variant,
sample,
sample.output_process_fn_grad,
clone_inputs=True,
fixme_ref_jvp_local=fixme_ref_jvp_local,
test_noncontig=op.name not in skip_noncontig,
)
def jvp_opinfo_test(
self,
fn,
sample,
output_process_fn,
clone_inputs,
fixme_ref_jvp_local,
test_noncontig,
):
# NB: we used requires_grad=True to determine where the primals are,
# but don't need that information otherwise
args = (sample.input,) + sample.args
kwargs = sample.kwargs
contig_fn, primals = normalize_op_input_output2(
fn, args, kwargs, output_process_fn, requires_grad=True
)
orig_primals = tree_map(lambda x: x.detach(), primals)
orig_tangents = tree_map(lambda x: torch.randn_like(x), primals)
def maybe_clone_inputs():
if clone_inputs:
primals = tree_map(torch.clone, orig_primals)
tangents = tree_map(torch.clone, orig_tangents)
return primals, tangents
return orig_primals, orig_tangents
primals, tangents = maybe_clone_inputs()
expected_primal_outs, expected_tangent_outs = fixme_ref_jvp_local(
contig_fn, primals, tangents
)
primals, tangents = maybe_clone_inputs()
primal_outs, tangent_outs = jvp(contig_fn, primals, tangents)
self.assertEqual(primal_outs, expected_primal_outs)
self.assertEqual(tangent_outs, expected_tangent_outs)
if test_noncontig:
noncontig_sample = sample.noncontiguous()
noncontig_args = (noncontig_sample.input,) + noncontig_sample.args
noncontig_kwargs = sample.kwargs
noncontig_fn, primals = normalize_op_input_output2(
fn,
noncontig_args,
noncontig_kwargs,
output_process_fn,
requires_grad=True,
)
noncontig_primals = tree_map(lambda x: x.detach(), primals)
noncontig_tangents = tree_map(
lambda x: noncontiguous_like(x), orig_tangents
)
noncontig_primal_outs, noncontig_tangent_outs = jvp(
noncontig_fn, noncontig_primals, noncontig_tangents
)
self.assertEqual(noncontig_primal_outs, expected_primal_outs)
self.assertEqual(noncontig_tangent_outs, expected_tangent_outs)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_vjp",
vjp_fail.union(
{
xfail("sparse.sampled_addmm", ""),
xfail("sparse.mm", "reduce"),
# ---- Non-Contiguous Failures ----
# This is expected to fail as the operator
# expects last dim to have stride=1
xfail("view_as_complex"),
# RuntimeError: query: last dimension must be contiguous
# The fused attention kernels require the last dim to be contiguous
decorate(
"nn.functional.scaled_dot_product_attention",
decorator=expectedFailureIf(not TEST_WITH_ROCM),
), # Works on ROCm
xfail("torch.ops.aten._flash_attention_forward"),
xfail("torch.ops.aten._efficient_attention_forward"),
# BUG
# AssertionError: Tensor-likes are not close!
xfail("as_strided"),
xfail("as_strided_scatter"),
xfail("_softmax_backward_data", device_type="cpu"),
xfail("as_strided", "partial_views"),
}
),
)
@opsToleranceOverride(
"TestOperators",
"test_vjp",
(
tol1(
"nn.functional.conv_transpose3d",
{torch.float32: tol(atol=5e-05, rtol=9e-05)},
device_type="cuda",
),
tol1(
"nn.functional.binary_cross_entropy_with_logits",
{torch.float32: tol(atol=1e-04, rtol=1e-04)},
),
tol1(
"nn.functional.multi_head_attention_forward",
{torch.float32: tol(atol=2e-03, rtol=2e-04)},
),
tol1("__rmatmul__", {torch.float32: tol(atol=1e-05, rtol=1e-05)}),
tol1("matmul", {torch.float32: tol(atol=1e-05, rtol=1e-05)}),
tol2(
"linalg.pinv", "hermitian", {torch.float32: tol(atol=1e-05, rtol=1e-05)}
),
tol1("linalg.tensorsolve", {torch.float32: tol(atol=9e-03, rtol=2e-04)}),
tol1("linalg.multi_dot", {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
tol1("svd_lowrank", {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
tol1("pca_lowrank", {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
),
)
def test_vjp(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
def _test(_op, inplace=False):
for sample in samples:
if inplace and not is_valid_inplace_sample_input(
sample, op, op.inplace_variant
):
continue
fn, primals = normalize_op_input_output(_op, sample)
result = fn(*primals)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
out, vjp_fn = vjp(fn, *primals)
self.assertEqual(out, result)
result_vjps = vjp_fn(cotangents)
_, vjp_fn = ref_vjp(fn, *primals)
expected_vjps = vjp_fn(cotangents)
self.assertEqual(result_vjps, expected_vjps)
if op.name not in skip_noncontig:
noncontig_fn, noncontig_primals = normalize_op_input_output(
_op, sample.noncontiguous()
)
noncontig_cotangents = tree_map(
lambda x: noncontiguous_like(x), cotangents
)
out_noncontig, vjp_fn = vjp(noncontig_fn, *noncontig_primals)
self.assertEqual(out_noncontig, result)
noncontig_result_vjps = vjp_fn(noncontig_cotangents)
self.assertEqual(noncontig_result_vjps, expected_vjps)
_test(op)
for a_op in op.aliases:
_test(a_op)
if op.inplace_variant:
def f(inp, *args, **kwargs):
return op.inplace_variant(inp.clone(), *args, **kwargs)
_test(f, inplace=True)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_vjpvjp",
vjp_fail.union(
{
skip("nn.functional.max_unpool1d"), # silent incorrectness; Flaky
skip("nn.functional.max_unpool2d"), # silent incorrectness; Flaky
xfail("nn.functional.ctc_loss"), # Not Implemented
xfail(
"native_layer_norm", ""
), # Expected a proper Tensor but got None for argument #1 'other'
xfail("sparse.sampled_addmm", ""), # sparse tensors have no strides
xfail("sparse.mm", "reduce"), # sparse tensors have no strides
skip("nn.functional.scaled_dot_product_attention"),
xfail("torch.ops.aten._flash_attention_forward"),
xfail("torch.ops.aten._efficient_attention_forward"),
# AssertionError: Tensor-likes are not close!
# Mismatched elements: 1 / 15 (6.7%)
# Greatest absolute difference: 24.0 at index (2, 4) (up to 1e-05 allowed)
# Greatest relative difference: 1.7933241714393998e-06 at index (2, 4) (up to 1.3e-06 allowed)
# The failure occurred for item [0]
xfail("masked.prod"),
}
),
)
@opsToleranceOverride(
"TestOperators",
"test_vjpvjp",
(
tol1(
"nn.functional.conv_transpose3d",
{torch.float32: tol(atol=5e-05, rtol=9e-05)},
device_type="cuda",
),
tol1("prod", {torch.float32: tol(atol=2e-05, rtol=1e-04)}),
tol1("masked.cumprod", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol1("cumprod", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol1("linalg.vander", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol2(
"linalg.det", "singular", {torch.float32: tol(atol=2e-05, rtol=2e-05)}
),
),
)
def test_vjpvjp(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
if not op.supports_gradgrad:
self.skipTest("Skipped! Operation does not support gradgrad")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
def test(_op, inplace=False):
for sample in samples:
if inplace and not is_valid_inplace_sample_input(
sample, op, op.inplace_variant
):
continue
fn, args = get_vjpfull_variant(_op, sample)
result = fn(*args)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
# Compute vjp of vjp
_, vjp_fn = vjp(fn, *args)
result_vjps = vjp_fn(cotangents)
# Compute ref_vjp of vjp. We could have done ref_vjp of ref_vjp,
# but since we're confident that vjp works by itself, this is
# an equivalent way to test that.
_, vjp_fn = ref_vjp(fn, *args)
expected_vjps = vjp_fn(cotangents)
self.assertEqual(result_vjps, expected_vjps)
test(op)
if op.inplace_variant:
def fn(inp, *args, **kwargs):
return op.inplace_variant(inp.clone(), *args, **kwargs)
test(fn, inplace=True)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@skipOps(
"TestOperators",
"test_vmapvjpvjp",
vjp_fail.union(
{
skip("atleast_1d"), # Takes too long
skip("atleast_2d"), # Takes too long
skip("atleast_3d"), # Takes too long
skip("ormqr"), # Takes too long
xfail("as_strided"), # incorrect output
xfail("as_strided", "partial_views"), # incorrect output
xfail("as_strided_scatter"), # incorrect output
skip("bernoulli"), # calls random op
xfail("bfloat16"), # rank 4 tensor for channels_last
xfail("cdouble"), # rank 4 tensor for channels_last
xfail("cfloat"), # rank 4 tensor for channels_last
xfail("chalf"), # rank 4 tensor for channels_last
xfail("double"), # rank 4 tensor for channels_last
xfail("float"), # rank 4 tensor for channels_last
xfail("half"), # rank 4 tensor for channels_last
xfail(
"NumpyCubeNotComposableAutogradFunction"
), # Not composable autograd.Function
# It looks like you're either (1) calling .item() on a Tensor or
# (2) attempting to use a Tensor in some data-dependent control flow or
# (3) encountering this error in PyTorch internals.
xfail("index_reduce", "prod"),
decorate(
"linalg.householder_product", decorator=runOnRocm
), # works on ROCm
xfail(
# nans
"masked.softmax",
device_type="cpu",
),
xfail(
"nanquantile", device_type="cpu"
), # vmap not implemented for at::equal.
xfail("native_layer_norm"), # vmap: inplace into a regular tensor
# got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail("nn.functional.batch_norm"),
xfail(
"nn.functional.binary_cross_entropy"
), # vmap: inplace into a regular tensor
xfail(
"nn.functional.ctc_loss"
), # derivate not implemented for _ctc_loss_backward
# flaky on ROCM needs investigation
decorate("nn.functional.conv_transpose2d", decorator=skipIfRocm),
skip("nn.functional.dropout"), # calls random op
skip("nn.functional.dropout2d"), # calls random op
skip("nn.functional.dropout3d"), # calls random op
skip("nn.functional.alpha_dropout"), # calls random op
skip(
"nn.functional.feature_alpha_dropout", "with_train"
), # calls random op
skip("nn.functional.fractional_max_pool2d"), # calls random op
skip("nn.functional.fractional_max_pool3d"), # calls random op
xfail("nn.functional.scaled_dot_product_attention"), # randomness
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
xfail("nn.functional.multi_head_attention_forward"), # randomness
# It looks like you're either (1) calling .item() on a Tensor or
# (2) attempting to use a Tensor in some data-dependent control flow or
# (3) encountering this error in PyTorch internals.
xfail("nn.functional.gaussian_nll_loss"),
# got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail("nn.functional.instance_norm"),
xfail(
"nn.functional.layer_norm"
), # vmap: inplace into a regular tensor
# RuntimeError: NYI: querying is_contiguous inside of vmap
# for memory_format other than torch.contiguous_formats
xfail("nn.functional.max_pool2d"),
# RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only
# supported with memory_format torch.preserve_format or
# torch.contiguous_format (got ChannelsLast)
xfail("nn.functional.max_unpool2d"),
# RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only
# supported with memory_format torch.preserve_format
# or torch.contiguous_format (got ChannelsLast)s
xfail("nn.functional.max_unpool2d", "grad"),
xfail(
"nn.functional.rrelu"
), # RuntimeError: vmap: we do not yet support aten::rrelu_with_noise.
xfail("normal"), # calls random op
xfail("normal", "number_mean"), # calls random op
xfail("pca_lowrank"), # calls random op
xfail(
"quantile", device_type="cpu"
), # Batching rule not implemented for `at::equal`
xfail(
"scatter_reduce", "prod"
), # vmap (looks like you are calling item/data-dependent)
xfail(
"sparse.sampled_addmm"
), # RuntimeError: Sparse CSR tensors do not have strides
xfail(
"sparse.mm", "reduce"
), # RuntimeError: Sparse CSR tensors do not have strides
xfail("svd_lowrank"), # calls random op
xfail("to"), # rank 4 tensor for channels_last
xfail(
"view_as_complex"
), # RuntimeError: Tensor must have a last dimension with stride 1
# got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail("nn.functional.batch_norm", "without_cudnn"),
# view doesn't work on sparse
xfail("to_sparse"),
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
}
),
)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
@opsToleranceOverride(
"TestOperators",
"test_vmapvjpvjp",
(
tol1("linalg.svd", {torch.float32: tol(atol=1e-03, rtol=5e-04)}),
tol1("linalg.lu", {torch.float32: tol(atol=5e-04, rtol=7e-04)}),
tol1("linalg.lu_factor", {torch.float32: tol(atol=2e-03, rtol=2e-02)}),
tol1("linalg.multi_dot", {torch.float32: tol(atol=2e-03, rtol=2e-04)}),
tol1("svd", {torch.float32: tol(atol=1e-03, rtol=5e-04)}),
tol1("matrix_exp", {torch.float32: tol(atol=1e-03, rtol=5e-04)}),
tol1("masked.prod", {torch.float32: tol(atol=2e-03, rtol=2e-04)}),
),
)
@skipOps(
"TestOperators",
"test_vmapvjpvjp",
{
xfail("as_strided", "partial_views"),
xfail("as_strided_copy"),
},
)
def test_vmapvjpvjp(self, device, dtype, op):
# Since, we test `vjpvjp` independently,
# for this test, we just verify that vmap
# of `vjpvjp` is correct.
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
if not op.supports_gradgrad:
self.skipTest("Skipped! Operation does not support gradgrad")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
for sample in samples:
fn, args = get_vjpfull_variant(op, sample)
result = fn(*args)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
cotangents = pytree.tree_leaves(cotangents)
num_args = len(args)
args_and_cotangents = tuple(args) + tuple(cotangents)
def vjp_of_vjp(*args_and_cotangents):
args = args_and_cotangents[:num_args]
cotangents = args_and_cotangents[num_args:]
result, vjp_fn = vjp(fn, *args)
result_vjps = vjp_fn(cotangents)
result = pytree.tree_leaves(result)
result_vjps = pytree.tree_leaves(result_vjps)
return (*result, *result_vjps)
is_batch_norm_and_training = is_batch_norm_training(op.name, sample.kwargs)
generator = get_fallback_and_vmap_exhaustive(
vjp_of_vjp,
args_and_cotangents,
{},
is_batch_norm_and_training=is_batch_norm_and_training,
)
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out)
vmapvjp_fail = vjp_fail.union(
{
# -------------------- ALLOWED FAILURES --------------------------------
# The following are not bugs and are expected behavior
xfail("masked_select"), # Not possible due to dynamic shapes
skip("bernoulli"), # randomness
skip("normal", ""), # randomness
skip("normal", "number_mean"), # randomness
skip("nn.functional.rrelu"), # randomness
skip("nn.functional.feature_alpha_dropout", "with_train"), # randomness
skip("nn.functional.feature_alpha_dropout", "without_train"), # randomness
skip("nn.functional.dropout"), # randomness
skip("nn.functional.dropout2d"), # randomness
skip("nn.functional.dropout3d", ""), # randomness
skip("nn.functional.alpha_dropout"), # randomness
skip("nn.functional.scaled_dot_product_attention"), # randomness
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
skip("nn.functional.multi_head_attention_forward"), # randomness
xfail(
"index_put", ""
), # not possible due to dynamic shapes; we support a subset
xfail("nn.functional.fractional_max_pool2d"), # random
xfail("nn.functional.fractional_max_pool3d"), # random
xfail("pca_lowrank", ""), # randomness
xfail("svd_lowrank", ""), # randomness
xfail("to_sparse", ""), # non-dense output
skip(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail("as_strided", "partial_views"),
xfail(
"NumpyCubeNotComposableAutogradFunction"
), # Not composable autograd.Function
# ----------------------------------------------------------------------
# ---------------------------- BUGS ------------------------------------
# All of the following are bugs and need to be fixed
skip(
"linalg.svdvals"
), # # really annoying thing where it passes correctness check but not has_batch_rule
skip("native_batch_norm"),
skip("_native_batch_norm_legit"),
# TODO: implement batching rule
skip("_batch_norm_with_update"),
xfail("__getitem__", ""), # dynamic error
xfail("nanquantile", device_type="cpu"), # checks q via a .item() call
xfail("nn.functional.gaussian_nll_loss"), # checks var for if any value < 0
xfail("narrow"), # .item() call
xfail("quantile", device_type="cpu"), # checks q via a .item() call
xfail("view_as_complex"), # Tensor must have a last dimension with stride 1
# required rank 4 tensor to use channels_last format
xfail("bfloat16"),
xfail("double"),
xfail("float"),
xfail("half"),
xfail("cdouble", ""),
xfail("cfloat", ""),
xfail("chalf", ""),
xfail("scatter_reduce", "prod"), # item call
# Batching rule not implemented for aten::_use_cudnn_ctc_loss.Tensor
xfail("nn.functional.ctc_loss", device_type="cuda"),
# NYI: querying is_contiguous inside of vmap for memory_format other than torch.contiguous_format
xfail("nn.functional.max_unpool2d"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("sparse.sampled_addmm", ""),
xfail("sparse.mm", "reduce"),
xfail("as_strided_scatter", ""), # calls as_strided
xfail("index_reduce", "prod"), # .item() call
# ---------------------------------------------------------------------
}
)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
@opsToleranceOverride(
"TestOperators",
"test_vmapvjp",
(
tol1(
"linalg.svd",
{torch.float32: tol(atol=5e-04, rtol=1e-04)},
device_type="cuda",
),
tol1(
"svd", {torch.float32: tol(atol=5e-04, rtol=1e-04)}, device_type="cuda"
),
tol1(
"linalg.householder_product",
{torch.float32: tol(atol=3e-04, rtol=9e-04)},
),
tol1(
"matrix_exp",
{torch.float32: tol(atol=5e-04, rtol=1e-04)},
device_type="cuda",
),
tol1(
"nn.functional.layer_norm",
{torch.float32: tol(atol=3e-4, rtol=1e-4)},
device_type="cpu",
),
tol1(
"native_layer_norm",
{torch.float32: tol(atol=3e-4, rtol=1e-4)},
device_type="cpu",
),
),
)
@skipOps(
"TestOperators",
"test_vmapvjp",
vmapvjp_fail.union(
{
xfail("as_strided"),
xfail("as_strided_copy"),
xfail("as_strided", "partial_views"),
}
),
)
def test_vmapvjp(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
for sample in samples:
cotangents = get_sample_cotangents(op, sample)
fn, args = get_vjp_fn_and_args_with_cotangents(op, sample, cotangents)
is_batch_norm_and_training = is_batch_norm_training(op.name, sample.kwargs)
generator = get_fallback_and_vmap_exhaustive(
fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training
)
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out)
vmapjvpall_fail = {
# -------------------- ALLOWED FAILURES --------------------------------
# The following are expected (not a bug)
skip("bernoulli", ""), # randomness
skip("nn.functional.dropout"), # randomness
skip("nn.functional.rrelu"), # randomness
skip("nn.functional.dropout2d", ""),
skip("nn.functional.dropout3d", ""),
skip("nn.functional.scaled_dot_product_attention"), # randomness
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
skip("nn.functional.multi_head_attention_forward"), # randomness
skip("nn.functional.alpha_dropout"), # randomness
skip("nn.functional.feature_alpha_dropout", "without_train"),
skip("nn.functional.feature_alpha_dropout", "with_train"),
xfail(
"nn.functional.fractional_max_pool2d"
), # Cannot access data pointer of Tensor that doesn't have storage
xfail(
"nn.functional.fractional_max_pool3d"
), # Cannot access data pointer of Tensor that doesn't have storage
# Not actually a problem: embedding with max_norm mutates the weight
# and causes different runs to produce different results.
# skip because this is flaky depending on what the max_norm is!
skip("nn.functional.embedding", ""),
skip("to"), # RuntimeError: required rank 4 tensor to use channels_last format
xfail(
"NumpyExpMarkDirtyAutogradFunction"
), # vmap: inplace into a regular tensor
# ----------------------------------------------------------------------
# ---------------------------- BUGS ------------------------------------
# The following are bugs that we should fix
xfail("masked.mean"), # silent incorrectness (nan difference)
xfail("as_strided", "partial_views"), # Tensor-likes are not close!
xfail(
"nn.functional.soft_margin_loss", ""
), # soft_margin_loss_backward does not support forward-ad
xfail("tensor_split"), # data_ptr composite compliance
xfail("quantile"), # at::equal batching rule (cpu), also, in-place vmap (cuda)
skip("as_strided"), # Test runner cannot handle this
# requires special handling, and does not yet have a batching rule. Feel free to file a github issue!
xfail("as_strided_scatter"),
xfail(
"nn.functional.gaussian_nll_loss"
), # .item or data-dependent control flow
xfail("scatter"), # forward-mode AD does not support at::scatter
xfail(
"nanquantile"
), # at::equal batching rule (cpu), also, in-place vmap (cuda)
xfail("view_as_complex"), # Tensor must have a last dimension with stride 1
skip("pca_lowrank", ""), # randomness
skip("svd_lowrank", ""), # randomness
xfail("double"), # required rank 4 tensor to use channels_last format
xfail("cdouble"), # required rank 4 tensor to use channels_last format
# potential silent incorrectness
skip(
"nn.functional.max_unpool1d"
), # Flaky, seems to sometimes his max_unpool2d
skip("nn.functional.max_unpool2d"), # fails everywhere except on mac
skip("nn.functional.max_unpool3d"), # fails everywhere except on mac
# erroring because running_mean and running_var aren't differentiable
xfail("nn.functional.batch_norm"),
xfail("nn.functional.batch_norm", "without_cudnn"),
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
# ----------------------------------------------------------------------
}
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
@opsToleranceOverride(
"TestOperators",
"test_vmapjvpall",
(
tol1(
"nn.functional.conv_transpose3d",
{torch.float32: tol(atol=2e-04, rtol=9e-3)},
device_type="cuda",
),
tol1(
"linalg.householder_product",
{torch.float32: tol(atol=2e-04, rtol=9e-3)},
),
),
)
@skipOps(
"TestOperators",
"test_vmapjvpall",
vmapjvpall_fail.union(
{
xfail("as_strided_copy"),
decorate(
"linalg.det",
"singular",
decorator=expectedFailureIf(IS_MACOS and IS_X86),
),
}
),
)
# This is technically a superset of test_vmapjvp. We should either delete test_vmapjvp
# or figure out if we can split vmapjvpall. It's useful to keep test_vmapjvp intact
# because that corresponds to "batched forward-mode AD" testing in PyTorch core
def test_vmapjvpall(self, device, dtype, op):
if is_inplace(op, op.get_op()):
# TODO: test in-place
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=False)
if not op.supports_forward_ad:
self.skipTest("Skipped! Forward AD not supported.")
return
for sample in samples:
arg_values = [sample.input] + list(sample.args)
kwarg_values = sample.kwargs
args = tuple(arg_values) + tuple(kwarg_values)
fn, args = get_jvp_variant_primals_tangents(op, sample)
is_batch_norm_and_training = is_batch_norm_training(op.name, kwarg_values)
generator = get_fallback_and_vmap_exhaustive(
fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training
)
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_vmapjvpall_has_batch_rule",
vmapjvpall_fail.union(
{
skip(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail(
"cdouble"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail("cumprod"),
xfail("masked_fill"),
xfail("fill"),
skip("masked.mean"), # ???
xfail("masked_scatter"),
xfail("put"),
xfail("take"),
xfail("nn.functional.feature_alpha_dropout", "without_train"),
xfail("nn.functional.dropout2d", ""),
xfail("pca_lowrank", ""),
xfail("svd_lowrank", ""),
xfail("nn.functional.feature_alpha_dropout", "with_train"),
xfail("special.log_ndtr", ""),
xfail("fft.ihfft2"), # conj_physical fallback
xfail("fft.ihfftn"), # conj_physical fallback
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("nn.functional.soft_margin_loss", ""),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.embedding", ""),
xfail(
"scatter_reduce", "sum"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "mean"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "amin"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "amax"
), # aten::scatter_reduce.two hit the vmap fallback
xfail("nn.functional.glu"),
xfail("nn.functional.bilinear"), # trilinear doesn't have batching rule
xfail("linalg.lu", ""),
xfail("nn.functional.dropout3d", ""),
xfail("as_strided_scatter", ""),
xfail("masked.cumprod", ""),
xfail("renorm"), # hit vmap fallback, which is disabled
xfail("t_copy"),
xfail("unsqueeze_copy"),
}
),
)
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
def test_vmapjvpall_has_batch_rule(self, device, dtype, op):
if is_inplace(op, op.get_op()):
# TODO: test in-place
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=False)
if not op.supports_forward_ad:
self.skipTest("Skipped! Forward AD not supported.")
return
def test():
for sample in samples:
arg_values = [sample.input] + list(sample.args)
kwarg_values = sample.kwargs
args = tuple(arg_values) + tuple(kwarg_values)
fn, args = get_jvp_variant_primals_tangents(op, sample)
is_batch_norm_and_training = is_batch_norm_training(
op.name, kwarg_values
)
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
fn,
args,
{},
is_batch_norm_and_training=is_batch_norm_and_training,
compute_loop_out=False,
):
pass
check_vmap_fallback(self, test, op, dry_run=False)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
@skipOps(
"TestOperators",
"test_vmapvjp_has_batch_rule",
vmapvjp_fail.union(
{
skip(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail("view_as_complex"),
xfail("cummax"),
xfail("cummin"),
xfail("fill"),
xfail(
"narrow"
), # Batching rule not implemented for `narrow.Tensor` (and view op)
xfail("special.log_ndtr"),
xfail("linalg.householder_product"),
xfail("masked_fill"),
xfail("masked_scatter"),
xfail("masked_select"),
xfail("nanquantile"),
xfail("ormqr"),
xfail("put"),
xfail(
"scatter_reduce", "sum"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "mean"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "amin"
), # aten::scatter_reduce.two hit the vmap fallback
xfail(
"scatter_reduce", "amax"
), # aten::scatter_reduce.two hit the vmap fallback
xfail("quantile"),
xfail("renorm"),
xfail("take"),
xfail("tensor_split"),
xfail("to_sparse"),
xfail("unfold"),
xfail("unfold_copy"),
xfail("nn.functional.dropout"),
xfail("fft.ihfft2"),
xfail("fft.ihfftn"),
xfail("nn.functional.gaussian_nll_loss"),
xfail("nn.functional.bilinear"),
xfail("nn.functional.fractional_max_pool3d"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.rrelu"),
xfail("nn.functional.embedding_bag"),
xfail("nn.functional.fractional_max_pool2d"),
xfail("nn.functional.feature_alpha_dropout", "with_train"),
xfail("pca_lowrank", ""),
xfail("nn.functional.dropout2d", ""),
xfail("nn.functional.feature_alpha_dropout", "without_train"),
xfail("svd_lowrank", ""),
xfail("nn.functional.max_unpool2d", ""),
xfail("nn.functional.multi_margin_loss", ""),
xfail("nn.functional.multilabel_margin_loss", ""),
xfail("nn.functional.pdist", ""),
xfail("scatter_reduce", "prod"),
xfail("nn.functional.max_unpool1d", ""),
xfail("nn.functional.max_unpool3d", ""),
xfail("nn.functional.max_unpool3d", "grad"),
xfail("nn.functional.soft_margin_loss", ""),
xfail("nn.functional.max_unpool1d", "grad"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail("linalg.lu", ""),
xfail("cdouble", ""),
xfail("cfloat", ""),
xfail("chalf", ""),
xfail(
"index_reduce", "prod"
), # aten::index_reduce hit the vmap fallback which is currently disabled
xfail(
"index_reduce", "mean"
), # aten::index_reduce hit the vmap fallback which is currently disabled
xfail(
"index_reduce", "amax"
), # aten::index_reduce hit the vmap fallback which is currently disabled
xfail(
"index_reduce", "amin"
), # aten::index_reduce hit the vmap fallback which is currently disabled
xfail("nn.functional.dropout3d", ""),
xfail("as_strided_scatter", ""),
xfail("_segment_reduce", "offsets"),
xfail("_segment_reduce", "lengths"),
xfail("sparse.sampled_addmm", ""),
xfail("sparse.mm", "reduce"),
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
xfail("native_dropout_backward"),
xfail(
"index_fill"
), # aten::_unique hit the vmap fallback which is currently disabled
xfail("t_copy"),
xfail("unsqueeze_copy"),
}
),
)
def test_vmapvjp_has_batch_rule(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
def test():
for sample in samples:
cotangents = get_sample_cotangents(op, sample)
fn, args = get_vjp_fn_and_args_with_cotangents(op, sample, cotangents)
is_batch_norm_and_training = is_batch_norm_training(
op.name, sample.kwargs
)
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
fn,
args,
{},
is_batch_norm_and_training=is_batch_norm_and_training,
compute_loop_out=False,
):
pass
for a_op in op.aliases:
fn, args = get_vjp_fn_and_args_with_cotangents(
a_op, sample, cotangents
)
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
fn,
args,
{},
is_batch_norm_and_training=is_batch_norm_and_training,
compute_loop_out=False,
):
pass
check_vmap_fallback(self, test, op, dry_run=False)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_vjpvmap",
vjp_fail.union(
{
skip("bernoulli", ""), # vjpvmap testing can't handle randomness
skip("normal", ""), # vjpvmap testing can't handle randomness
skip(
"normal", "number_mean"
), # vjpvmap testing can't handle randomness
skip("nn.functional.rrelu"), # randomness
skip("nn.functional.feature_alpha_dropout", "with_train"), # randomness
skip(
"nn.functional.feature_alpha_dropout", "without_train"
), # randomness
skip("nn.functional.scaled_dot_product_attention"),
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
skip("nn.functional.multi_head_attention_forward"), # randomness
skip("nn.functional.alpha_dropout"), # randomness
skip(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
skip("to_sparse", ""), # non-dense output
skip("ormqr", ""), # takes too long
xfail(
"NumpyCubeNotComposableAutogradFunction"
), # Not composable autograd.Function
# fallback path doesn't work
# All of the following are bugs and need to be fixed
xfail("__getitem__", ""),
xfail("index_put", ""),
xfail("view_as_complex"),
xfail("nn.functional.gaussian_nll_loss"),
xfail("masked_select"),
xfail(
"narrow"
), # Batching rule not implemented for `narrow.Tensor` (and view op)
skip(
"nn.functional.fractional_max_pool3d"
), # generator works on cpu, fails on cuda
skip(
"nn.functional.fractional_max_pool2d"
), # generator works on cpu, fails on cuda
xfail("column_stack", ""),
xfail("nn.functional.dropout2d", ""),
xfail("svd_lowrank", ""),
xfail("pca_lowrank", ""),
xfail("clamp"),
# something weird happening with channels_last
xfail("bfloat16"),
xfail("double"),
xfail("float"),
xfail("half"),
xfail("cdouble"),
xfail("cfloat"),
xfail("nn.functional.dropout3d", ""),
xfail("as_strided_scatter", ""),
xfail("sparse.sampled_addmm", ""),
xfail("sparse.mm", "reduce"),
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
xfail("as_strided", "partial_views"),
}
),
)
def test_vjpvmap(self, device, dtype, op):
# NB: there is no vjpvmap_has_batch_rule test because that is almost
# certainly redundant with the vmap_has_batch_rule test in test_vmap.py
# one-off skip
if op.name == "nn.functional.dropout":
self.skipTest("Skipped!")
if not op.supports_autograd:
# If the op doesn't support autograd, vmap(op) won't either
self.skipTest("Skipped! Autograd not supported.")
return
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
batch_norm_fns = (
"nn.functional.batch_norm",
"nn.functional.instance_norm",
) # instance norm calls batch norm
is_batch_norm = op.name in batch_norm_fns
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
is_batch_norm_and_training = is_batch_norm and is_batch_norm_training(
op.name, kwargs
)
generator = generate_vmap_inputs(
args, kwargs, is_batch_norm_and_training=is_batch_norm_and_training
)
for batched_args, in_dims, kwargs in generator:
vmapped_op = vmap(op, in_dims)
fn, primals = normalize_op_input_output2(
vmapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
result = fn(*primals)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
_, vjp_fn = vjp(fn, *primals)
result_vjps = vjp_fn(cotangents)
_, vjp_fn = ref_vjp(fn, *primals)
expected_vjps = vjp_fn(cotangents)
self.assertEqual(result_vjps, expected_vjps)
def _compare_jacobians_of_vjp(
self, fn, cotangents_and_primals, argnums=None, atol_rtol=None
):
if argnums is None:
argnums = tuple(range(len(cotangents_and_primals)))
def get_vjp(cotangents, *primals):
_, vjp_fn = vjp(fn, *primals)
return vjp_fn(cotangents)
jacobian_jvp = jacfwd(get_vjp, argnums)(*cotangents_and_primals)
jacobian_vjp = jacrev(get_vjp, argnums)(*cotangents_and_primals)
# For dtype changing operations, the jacobians have different dtype.
jacobian_jvp = tree_map(lambda x: x.to(torch.float), jacobian_jvp)
jacobian_vjp = tree_map(lambda x: x.to(torch.float), jacobian_vjp)
if atol_rtol is not None:
(atol, rtol) = atol_rtol
self.assertEqual(jacobian_jvp, jacobian_vjp, atol=atol, rtol=rtol)
else:
self.assertEqual(jacobian_jvp, jacobian_vjp)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestOperators",
"test_jvpvjp",
vjp_fail.union(
{
xfail("to_sparse", ""), # NYI
# RuntimeError: Trying to set a forward gradient that has a different size than that of the original Tensor,
# this is not supported. Tensor is of size [5, 2, 3] while the given forward gradient is of size [1, 2, 3].
xfail("normal", ""),
xfail("cdist", ""), # NYI: forward-AD for _cdist_forward
xfail("cholesky", ""), # NYI: forward-AD for cholesky
xfail(
"nn.functional.embedding_bag", ""
), # NYI: forward-AD for _embedding_bag
xfail(
"nn.functional.grid_sample", ""
), # NYI: forward AD for grid_sampler_2d
xfail("grid_sampler_2d", ""), # NYI: forward AD for grid_sampler_2d
xfail(
"nn.functional.hardsigmoid", ""
), # NYI: forward AD for hardsigmoid_backward
xfail(
"nn.functional.huber_loss", ""
), # NYI: forward AD for huber_loss_backward
xfail("NumpyCubeNotComposableAutogradFunction"), # not composable
xfail("ormqr", ""), # NYI: forward AD for ormqr
xfail(
"nn.functional.multilabel_margin_loss", ""
), # NYI: multilabel_margin_loss_forward
xfail(
"nn.functional.soft_margin_loss", ""
), # NYI: forward-AD for soft_margin_loss_backward
xfail("nn.functional.ctc_loss", ""), # NYI: forward-AD for _ctc_loss
xfail("nn.functional.pdist", ""), # NYI: forward-AD with _pdist_forward
skip("nn.functional.scaled_dot_product_attention"),
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
xfail(
"nn.functional.multi_margin_loss", ""
), # NYI: forward AD with multi_margin_loss
skip(
"linalg.householder_product", "", device_type="cuda"
), # flaky, I'm not sure why
xfail("sparse.sampled_addmm", ""), # Sparse tensors have no strides
xfail(
"_segment_reduce", "offsets"
), # NYI: forward-AD for _segment_reduce
xfail("sparse.mm", "reduce"), # Sparse tensors have no strides
xfail("index_reduce", "prod"), # NYI: forward-AD for index_reduce
xfail("index_reduce", "mean"), # NYI: forward-AD for index_reduce
xfail("index_reduce", "amax"), # NYI: forward-AD for index_reduce
xfail("index_reduce", "amin"), # NYI: forward-AD for index_reduce
xfail(
"_segment_reduce", "lengths"
), # NYI: forward-AD for _segment_reduce
xfail("native_dropout_backward"), # NYI
}
),
)
@opsToleranceOverride(
"TestOperators",
"test_jvpvjp",
(
tol1("masked.prod", {torch.float32: tol(atol=1e-04, rtol=1.3e-05)}),
tol1("masked.cumprod", {torch.float32: tol(atol=1e-04, rtol=5e-04)}),
tol1(
"cumprod",
{torch.float32: tol(atol=1e-03, rtol=5e-04)},
device_type="cuda",
),
tol1(
"linalg.det",
{torch.float32: tol(atol=3e-05, rtol=5e-06)},
device_type="cuda",
),
tol1(
"linalg.vander",
{torch.float32: tol(atol=1e-04, rtol=1.3e-05)},
device_type="cuda",
),
tol1(
"nn.functional.group_norm", {torch.float32: tol(atol=1e-03, rtol=1e-03)}
),
tol2(
"linalg.pinv", "hermitian", {torch.float32: tol(atol=5e-03, rtol=5e-03)}
),
),
)
def test_jvpvjp(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
for sample in samples:
fn, primals = normalize_op_input_output(op, sample)
result = fn(*primals)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
primals_tangents = tree_map(lambda x: torch.randn_like(x), primals)
cotangents_tangents = tree_map(lambda x: torch.randn_like(x), cotangents)
def push_vjp(primals, cotangents):
_, vjp_fn = vjp(fn, *primals)
return vjp_fn(cotangents)
result = jvp(
push_vjp, (primals, cotangents), (primals_tangents, cotangents_tangents)
)
self.assertEqual(len(result), 2)
def tree_map2(fn, first, second):
flat_first, spec_first = tree_flatten(first)
flat_second, spec_second = tree_flatten(second)
assert spec_first == spec_second
flat_result = [fn(f, s) for f, s in zip(flat_first, flat_second)]
return tree_unflatten(flat_result, spec_first)
def reference(primals, cotangents, primals_tangents, cotangents_tangents):
with fwAD.dual_level():
primal_duals = tree_map2(fwAD.make_dual, primals, primals_tangents)
_, vjp_fn = ref_vjp(fn, *primal_duals)
cotangent_duals = tree_map2(
fwAD.make_dual, cotangents, cotangents_tangents
)
result = vjp_fn(cotangent_duals)
flat_result, spec = tree_flatten(result)
primals_out, tangents_out = zip(
*[fwAD.unpack_dual(r) for r in flat_result]
)
tangents_out = [
t if t is not None else torch.zeros_like(p)
for p, t in zip(primals_out, tangents_out)
]
expected = (
tree_unflatten(primals_out, spec),
tree_unflatten(tangents_out, spec),
)
return expected
expected = reference(
primals, cotangents, primals_tangents, cotangents_tangents
)
self.assertEqual(result, expected)
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@skipOps(
"TestOperators",
"test_vmapjvpvjp",
vjp_fail.union(
{
# Following operators take too long, hence skipped
skip("atleast_1d"),
skip("atleast_2d"),
skip("atleast_3d"),
skip("meshgrid", "list_of_tensors"),
skip("meshgrid", "variadic_tensors"),
skip("broadcast_tensors"),
skip("linalg.lstsq"),
skip("nn.functional.bilinear"),
skip("native_layer_norm"),
skip("ormqr"),
# Not actually a problem
xfail("NumpyCubeNotComposableAutogradFunction"), # not composable
xfail(
"NumpyExpMarkDirtyAutogradFunction"
), # vmap: inplace into a regular tensor
# Potential bugs/errors
xfail("as_strided"), # AssertionError: Tensor-likes are not close!
xfail(
"as_strided", "partial_views"
), # AssertionError: Tensor-likes are not close!
xfail("as_strided_copy"), # AssertionError: Tensor-likes are not close!
xfail(
"as_strided_scatter"
), # AssertionError: Tensor-likes are not close!
xfail("bernoulli"), # calls random op
xfail("bfloat16"), # required rank 4 tensor to use channels_last format
xfail("cdist"), # Forward AD not implemented and no decomposition
xfail("cdouble"), # required rank 4 tensor to use channels_last format
xfail("cfloat"), # required rank 4 tensor to use channels_last format
xfail("chalf"), # required rank 4 tensor to use channels_last format
xfail("cholesky"), # Forward AD not implemented and no decomposition
xfail("ormqr"), # Forward AD not implemented and no decomposition
xfail("double"), # required rank 4 tensor to use channels_last format
xfail("float"), # required rank 4 tensor to use channels_last format
xfail("half"), # required rank 4 tensor to use channels_last format
xfail("index_reduce", "prod"), # NYI: forward AD for index_reduce
xfail("index_reduce", "mean"), # NYI: forward AD for index_reduce
xfail("index_reduce", "amax"), # NYI: forward AD for index_reduce
xfail("index_reduce", "amin"), # NYI: forward AD for index_reduce
xfail(
"mvlgamma", "mvlgamma_p_1"
), # vmap: inplace into a regular tensor
xfail(
"mvlgamma", "mvlgamma_p_3"
), # vmap: inplace into a regular tensor
xfail(
"mvlgamma", "mvlgamma_p_5"
), # vmap: inplace into a regular tensor
xfail("nanquantile"), # Batching rule not implemented for aten::equal
# RuntimeError: Batch norm got a batched tensor as input while the
# running_mean or running_var, which will be updated in place,
# were not batched.
xfail("nn.functional.batch_norm"),
xfail("nn.functional.batch_norm", "without_cudnn"),
xfail(
"nn.functional.ctc_loss"
), # ForwardAD not implemented and no decomposition
xfail("nn.functional.dropout2d"), # calls random op
xfail("nn.functional.dropout3d"), # calls random op
xfail("nn.functional.dropout"), # calls random op
xfail("nn.functional.scaled_dot_product_attention"), # randomness
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
xfail("nn.functional.multi_head_attention_forward"), # randomness
xfail(
"nn.functional.embedding_bag"
), # Forward AD not implemented and no decomposition
xfail("nn.functional.alpha_dropout"), # calls randomn op
xfail(
"nn.functional.feature_alpha_dropout", "with_train"
), # calls random op
xfail("nn.functional.fractional_max_pool2d"), # calls random op
xfail("nn.functional.fractional_max_pool3d"), # calls random op
xfail("nn.functional.gaussian_nll_loss"), # data depenedant flow
xfail(
"nn.functional.grid_sample"
), # Forward AD not implemented and no decomposition
xfail(
"grid_sampler_2d"
), # Forward AD not implemented and no decomposition
xfail(
"nn.functional.hardsigmoid"
), # Forward AD not implemented and no decomposition
xfail(
"nn.functional.hinge_embedding_loss"
), # vmap: inplace into a regular tensor
xfail(
"nn.functional.huber_loss"
), # Forward AD not implemented and no decomposition
# RuntimeError: Batch norm got a batched tensor as input while the
# running_mean or running_var, which will be updated in place,
# were not batched.
xfail("nn.functional.instance_norm"),
# NYI: Tensor.clone(memory_format) inside vmap is only supported with
# memory_format torch.preserve_format or torch.contiguous_format (got ChannelsLast)
xfail("nn.functional.max_unpool2d"),
xfail("nn.functional.max_unpool2d", "grad"),
xfail(
"nn.functional.multi_margin_loss"
), # Forward AD not implemented and no decomposition
xfail(
"nn.functional.multilabel_margin_loss"
), # Forward AD not implemented and no decomposition
xfail(
"nn.functional.pdist"
), # Forward AD not implemented and no decomposition
xfail(
"nn.functional.rrelu"
), # vmap: we do not yet support aten::rrelu_with_noise.
xfail(
"nn.functional.soft_margin_loss"
), # Forward AD not implemented and no decomposition
xfail("normal"), # calls random op
xfail("normal", "number_mean"), # calls random op
xfail("pca_lowrank"), # calls random op
xfail("quantile"), # Batching rule not implemented for aten::equal
xfail(
"scatter_reduce", "prod"
), # Forward AD not implemented and no decomposition
xfail(
"_segment_reduce", "lengths"
), # Forward AD not implemented and no decomposition
xfail(
"_segment_reduce", "offsets"
), # Forward AD not implemented and no decomposition
xfail(
"sparse.sampled_addmm"
), # RuntimeError: Sparse CSR tensors do not have strides
xfail(
"sparse.mm", "reduce"
), # RuntimeError: Sparse CSR tensors do not have strides
xfail("svd_lowrank"), # calls random op
xfail(
"to"
), # RuntimeError: required rank 4 tensor to use channels_last format
xfail("to_sparse"), # Forward AD not implemented and no decomposition
xfail(
"view_as_complex"
), # RuntimeError: Tensor must have a last dimension with stride 1
# RuntimeError: Batch norm got a batched tensor as
# input while the running_mean or running_var, which will be updated in
# place, were not batched.
xfail("native_batch_norm"),
xfail("_native_batch_norm_legit"),
# TODO: implement batching rule
xfail("_batch_norm_with_update"),
xfail("native_dropout_backward"),
}
),
)
@ops(op_db + additional_op_db + autograd_function_db, allowed_dtypes=(torch.float,))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
@opsToleranceOverride(
"TestOperators",
"test_vmapjvpvjp",
(
tol1("linalg.svd", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol1(
"linalg.householder_product",
{torch.float32: tol(atol=5e-03, rtol=5e-03)},
),
tol1("linalg.multi_dot", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol2(
"linalg.pinv", "hermitian", {torch.float32: tol(atol=5e-04, rtol=5e-04)}
),
tol1(
"nn.functional.conv_transpose2d",
{torch.float32: tol(atol=5e-04, rtol=5e-04)},
),
tol1("svd", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
tol1("matrix_exp", {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
),
)
def test_vmapjvpvjp(self, device, dtype, op):
# Since we test `jvpvjp` separately,
# in this we just check that vmap of `jvpvjp`
# is correct.
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
samples = op.sample_inputs(device, dtype, requires_grad=True)
# TODO: test in-place
if is_inplace(op, op.get_op()):
self.skipTest("Skipped! NYI: inplace-testing not supported.")
return
for sample in samples:
fn, primals = normalize_op_input_output(op, sample)
result = fn(*primals)
cotangents = tree_map(lambda x: torch.randn_like(x), result)
primals_tangents = tree_map(lambda x: torch.randn_like(x), primals)
cotangents_tangents = tree_map(lambda x: torch.randn_like(x), cotangents)
def push_vjp(primals, cotangents):
_, vjp_fn = vjp(fn, *primals)
return vjp_fn(cotangents)
args, spec = tree_flatten(
((primals, cotangents), (primals_tangents, cotangents_tangents))
)
def jvp_of_vjp(*args):
(primals, tangents) = tree_unflatten(args, spec)
primals_out, tangents_out = jvp(push_vjp, primals, tangents)
flat_primals_out = pytree.tree_leaves(primals_out)
flat_tangents_out = pytree.tree_leaves(tangents_out)
return tuple(flat_primals_out + flat_tangents_out)
is_batch_norm_and_training = is_batch_norm_training(op, sample.kwargs)
generator = get_fallback_and_vmap_exhaustive(
jvp_of_vjp,
args,
{},
is_batch_norm_and_training=is_batch_norm_and_training,
)
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out)
def _make_extremal_inputs(self, shape, device):
if shape is None:
return (None,)
return (
torch.full(shape, -1000.0, device=device),
torch.zeros(shape, device=device),
torch.full(shape, 1000.0, device=device),
)
def _arg_and_kwarg_options(self, args_options, kwargs_options):
return itertools.product(*args_options, kwargs_options)
def test_extremal_numerics_nll_loss(self, device):
N, C = 3, 4
d1, d2, d3 = 5, 6, 7
shapes = (
((N, C), (N,), (C,)),
((N, C), (N,), None),
((N, C, d1, d2, d3), (N, d1, d2, d3), (C,)),
((N, C, d1, d2, d3), (N, d1, d2, d3), None),
)
kwargs_options = (
{"ignore_index": 0, "reduction": "mean"},
{"reduction": "sum"},
{"reduction": "none"},
{},
)
for input_shape, target_shape, weight_shape in shapes:
input_options = self._make_extremal_inputs(input_shape, device)
for input, kwargs in self._arg_and_kwarg_options(
(input_options,), kwargs_options
):
if weight_shape is None:
weight = None
else:
weight = torch.randn(weight_shape, device=device)
target = torch.randint(0, C, target_shape, device=device)
target[
0
] = 1 # since we're ignoring index 0, at least one element must be non-zero
fn = functools.partial(
torch.nn.functional.nll_loss, target=target, weight=weight, **kwargs
)
result = fn(input)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(fn, (cotangents, input))
def test_extremal_numerics_l1_loss(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
kwargs_options = ({"reduction": "sum"}, {"reduction": "none"}, {})
for shape in shapes:
input_options = self._make_extremal_inputs(shape, device)
target_options = self._make_extremal_inputs(shape, device)
for input, target, kwargs in self._arg_and_kwarg_options(
(input_options, target_options), kwargs_options
):
result = torch.nn.functional.l1_loss(input, target)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
torch.nn.functional.l1_loss, (cotangents, input, target)
)
def test_extremal_numerics_mse_loss(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
kwargs_options = ({"reduction": "sum"}, {"reduction": "none"}, {})
for shape in shapes:
input_options = self._make_extremal_inputs(shape, device)
target_options = self._make_extremal_inputs(shape, device)
for input, target, kwargs in self._arg_and_kwarg_options(
(input_options, target_options), kwargs_options
):
result = torch.nn.functional.mse_loss(input, target)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
torch.nn.functional.mse_loss, (cotangents, input, target)
)
def test_extremal_numerics_softmax(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
kwargs_options = ({"dim": 1}, {})
for shape in shapes:
input_options = self._make_extremal_inputs(shape, device)
for input, kwargs in self._arg_and_kwarg_options(
(input_options,), kwargs_options
):
result = torch.nn.functional.softmax(input)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
torch.nn.functional.softmax, (cotangents, input)
)
def test_extremal_numerics_log_softmax(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
kwargs_options = ({"dim": 1}, {})
for shape in shapes:
input_options = self._make_extremal_inputs(shape, device)
for input, kwargs in self._arg_and_kwarg_options(
(input_options,), kwargs_options
):
result = torch.nn.functional.log_softmax(input)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
torch.nn.functional.log_softmax, (cotangents, input)
)
def test_extremal_numerics_cross_entropy(self, device):
N, C = 3, 4
d1, d2, d3 = 5, 6, 7
shapes = (
((N, C), (N,), (C,)),
((N, C), (N,), None),
((N, C), (N, C), (C,)),
((N, C), (N, C), None),
((C,), (), (C,)),
((C,), (), None),
((C,), (C,), (C,)),
((C,), (C,), None),
((N, C, d1, d2, d3), (N, d1, d2, d3), (C,)),
((N, C, d1, d2, d3), (N, d1, d2, d3), None),
((N, C, d1, d2, d3), (N, C, d1, d2, d3), (C,)),
((N, C, d1, d2, d3), (N, C, d1, d2, d3), None),
)
for input_shape, target_shape, weight_shape in shapes:
input_options = self._make_extremal_inputs(input_shape, device)
kwargs_options = [{"reduction": "sum"}, {"reduction": "none"}, {}]
if input_shape != target_shape:
kwargs_options.append({"ignore_index": 0, "reduction": "mean"})
for input, kwargs in self._arg_and_kwarg_options(
(input_options,), kwargs_options
):
if weight_shape is None:
weight = None
else:
weight = torch.randn(weight_shape, device=device)
if input_shape == target_shape:
target = torch.rand(target_shape, device=device)
elif len(target_shape) == 0:
target = torch.tensor(
1, device=device
) # must be non-zero since ignore_index may be 0
else:
target = torch.randint(0, C, target_shape, device=device)
fn = functools.partial(
torch.nn.functional.cross_entropy,
target=target,
weight=weight,
**kwargs,
)
result = fn(input)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
fn, (cotangents, input), atol_rtol=(1e-4, 1e-5)
)
def test_extremal_numerics_binary_cross_entropy(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
for shape in shapes:
weight_options = self._make_extremal_inputs(shape, device)
kwargs_options = [{"reduction": "sum"}, {"reduction": "none"}, {}]
for weight, kwargs in self._arg_and_kwarg_options(
(weight_options,), kwargs_options
):
input = torch.rand(shape, device=device)
target = torch.rand(shape, device=device)
fn = functools.partial(
torch.nn.functional.binary_cross_entropy,
target=target,
weight=weight,
**kwargs,
)
result = fn(input)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(
fn, (cotangents, input), atol_rtol=(1e-4, 2e-5)
)
def test_extremal_numerics_layer_norm(self, device):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
for shape in shapes:
input_options = self._make_extremal_inputs(shape, device)
normalized_shape = shape[1:]
weight_options = self._make_extremal_inputs(normalized_shape, device)
bias_options = self._make_extremal_inputs(normalized_shape, device)
for input, bias, weight in self._arg_and_kwarg_options(
(input_options, bias_options, weight_options), ()
):
def fn(input, weight, bias):
return torch.nn.functional.layer_norm(
input, normalized_shape, weight=weight, bias=bias
)
result = fn(input, weight, bias)
cotangents = torch.randn_like(result, device=device)
self._compare_jacobians_of_vjp(fn, (cotangents, input, weight, bias))
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(
op_db + additional_op_db + autograd_function_db,
allowed_dtypes=(torch.float32, torch.double),
)
@skipOps(
"TestOperators",
"test_vmap_autograd_grad",
{
# The size of tensor a (4) must match the size of tensor b (10) at non-singleton dimension 0
xfail("masked_select"),
xfail("nn.functional.max_unpool2d", "grad"), # contiguous call
xfail("nn.functional.max_unpool2d"), # contiguous call
xfail("to_sparse"), # dispatch key issue
xfail("torch.ops.aten._efficient_attention_forward"), # outputs ints
# https://github.com/pytorch/pytorch/issues/96560#issuecomment-2151063723
# ** minor accuracy issue for float32 on ROCm
decorate("xlogy", decorator=skipIfRocm),
# numerical inconsistencies, look like bugs
skip(
"matrix_exp", dtypes=(torch.float32,), device_type="cuda"
), # fails on linux, passes on windows
skip(
"ldexp", dtypes=(torch.float32,), device_type="cpu"
), # fails on all but mac
skip("__rmatmul__"), # flaky needs investigation
skip("matmul"), # flaky needs investigation
skip("nn.functional.conv_transpose3d"), # flaky needs investigation
skip("nn.functional.conv_transpose2d"), # flaky needs investigation
skip("nn.functional.conv_transpose1d"), # flaky needs investigation
skip(
"nn.functional.layer_norm", dtypes=(torch.float32,), device_type="cpu"
), # fails on windows
skip(
"linalg.lu_factor", dtypes=(torch.float32,), device_type="cuda"
), # fails on all but windows
skip(
"linalg.lu_factor_ex", dtypes=(torch.float32,), device_type="cuda"
), # fails on all but windows
skip("linalg.multi_dot", "", device_type="cpu"),
skip("sparse.sampled_addmm", ""),
skip("sparse.mm", "reduce"),
skip("native_layer_norm", "", device_type="cpu"),
# RuntimeError: Expected contiguous tensor, but got
# non-contiguous tensor for argument #2 'grad_output'
decorate(
"_batch_norm_with_update",
decorator=expectedFailureIf(TEST_WITH_ROCM),
device_type="cuda",
),
},
)
@opsToleranceOverride(
"TestOperators",
"test_vmap_autograd_grad",
(
tol1(
"ldexp",
{torch.float32: tol(atol=3e-04, rtol=1.6e-06)},
device_type="cuda",
),
tol1(
"linalg.householder_product",
{torch.float32: tol(atol=5e-04, rtol=9e-03)},
device_type="cuda",
),
tol1(
"linalg.householder_product",
{torch.float32: tol(atol=6e-03, rtol=1e-03)},
device_type="cpu",
),
tol1(
"linalg.multi_dot",
{torch.float32: tol(atol=2e-04, rtol=1e-04)},
device_type="cuda",
),
tol2(
"linalg.pinv", "hermitian", {torch.float32: tol(atol=5e-06, rtol=5e-06)}
),
tol1("nn.functional.conv3d", {torch.float32: tol(atol=5e-04, rtol=9e-03)}),
tol1(
"nn.functional.conv2d",
{torch.float32: tol(atol=3e-05, rtol=5e-06)},
device_type="cuda",
),
tol1("svd_lowrank", {torch.float32: tol(atol=5e-05, rtol=5e-05)}),
tol1("pca_lowrank", {torch.float32: tol(atol=5e-05, rtol=5e-05)}),
),
)
def test_vmap_autograd_grad(self, device, dtype, op):
def is_differentiable(inp):
return isinstance(inp, Tensor) and (
inp.grad_fn is not None or inp.requires_grad
)
def get_flat_differentiable(tree):
flattened = pytree.tree_leaves(tree)
return tuple(i for i in flattened if is_differentiable(i))
def get_differentiable_linked(list1, list2):
paired_list = zip(list1, list2)
paired_list = tuple(
(first, second)
for (first, second) in paired_list
if is_differentiable(first)
)
return zip(*paired_list)
def filter_none(out):
flattened = pytree.tree_leaves(out)
return tuple(o for o in flattened if o is not None)
if not op.supports_autograd:
self.skipTest("Skipped! Autograd not supported.")
return
sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)
for sample_input in sample_inputs:
fn, primals = normalize_op_input_output(op, sample_input)
out = fn(*primals)
cotangents = tree_map(torch.randn_like, out)
def compute_grad(cotangents):
out_flattened = out
cotangents_flattened = cotangents
if not isinstance(out_flattened, torch.Tensor):
out_flattened = pytree.tree_leaves(out)
cotangents_flattened = pytree.tree_leaves(cotangents)
out_flattened, cotangents_flattened = get_differentiable_linked(
out_flattened, cotangents_flattened
)
return filter_none(
torch.autograd.grad(
out_flattened,
get_flat_differentiable(primals),
cotangents_flattened,
retain_graph=True,
allow_unused=True,
)
)
is_batch_norm_and_training = is_batch_norm_training(op, sample_input.kwargs)
generator = get_fallback_and_vmap_exhaustive(
compute_grad,
(cotangents,),
{},
is_batch_norm_and_training=is_batch_norm_and_training,
)
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out)
def test_vmapvmapjvp_linalg_solve(self):
ops = [op for op in op_db if op.name == "linalg.solve"]
assert len(ops) > 0
# this specializes a lot of code from the get_fallback_and_vmap_exhaustive test. If we need this more
# generally, this could go for a refactor
B0 = 2
B1 = 3
# we want to check the case where A will be seen as contiguous by jvp but during the vmap calls will become
# non-contiguous because vmap will expand. This will happen during both levels of vmap
A = torch.randn(4, 4)
k = torch.randn(4, 5, B1, B0)
fn, args = get_jvp_variant_primals_tangents(
torch.linalg.solve, SampleInput(A, args=(k,))
)
in_dims_all = (None, -1, None, -1)
batched_out = vmap(vmap(fn, in_dims=in_dims_all), in_dims=in_dims_all)(*args)
loop_out = loop2(fn, in_dims_all, in_dims_all, 0, 0, B0, B1, *args)
self.assertEqual(loop_out, batched_out)
@ops(
filter(lambda op: op.name in aliasing_ops, op_db + additional_op_db),
allowed_dtypes=(torch.float,),
)
@parametrize("grad_op", ["jvp", "vjp"])
def test_view_then_inplace(self, device, dtype, op, grad_op):
for sample_input in op.sample_inputs(device, dtype):
def f(x):
op(sample_input.input, *sample_input.args, **sample_input.kwargs).copy_(
x
)
return x
without_grad = op(
sample_input.input, *sample_input.args, **sample_input.kwargs
)
if grad_op == "jvp":
with self.assertRaisesRegex(
RuntimeError,
"During a grad .* attempted to call in-place operation",
):
jvp(
f,
(torch.randn_like(without_grad),),
(torch.randn_like(without_grad),),
)
else:
assert grad_op == "vjp"
with self.assertRaisesRegex(
RuntimeError,
"During a grad .* attempted to call in-place operation",
):
vjp(f, torch.randn_like(without_grad))
@ops(
filter(
lambda op: op.name in aliasing_ops_list_return, op_db + additional_op_db
),
allowed_dtypes=(torch.float,),
)
@parametrize("grad_op", ["jvp", "vjp"])
def test_view_then_inplace_list_return(self, device, dtype, op, grad_op):
for sample_input in op.sample_inputs(device, dtype):
def f(x):
op(sample_input.input, *sample_input.args, **sample_input.kwargs)[
0
].copy_(x)
return x
without_grad = op(
sample_input.input, *sample_input.args, **sample_input.kwargs
)[0]
with self.assertRaisesRegex(
RuntimeError, "During a grad .* attempted to call in-place operation"
):
if grad_op == "jvp":
jvp(
f,
(torch.randn_like(without_grad),),
(torch.randn_like(without_grad),),
)
else:
assert grad_op == "vjp"
vjp(f, torch.randn_like(without_grad))
@parametrize("grad_op", ["jvp", "vjp"])
def test_view_then_inplace_special(self, grad_op):
# some things in __getitem__ use at::index, which doesn't alias, so this tests a subset of them that do alias
ops = [
lambda x: x[0],
lambda x: x[0, 0, 0],
lambda x: x[:1],
lambda x: x[:, :1],
lambda x: x[:, :1, :],
]
for op in ops:
def f(x):
op(captured).copy_(x)
return x
captured = torch.randn(4, 3, 3)
without_grad = op(captured)
if grad_op == "jvp":
with self.assertRaisesRegex(
RuntimeError,
"During a grad .* attempted to call in-place operation",
):
jvp(
f,
(torch.randn_like(without_grad),),
(torch.randn_like(without_grad),),
)
else:
assert grad_op == "vjp"
with self.assertRaisesRegex(
RuntimeError,
"During a grad .* attempted to call in-place operation",
):
vjp(f, torch.randn_like(without_grad))
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
# NOTE: [three-transform testing]
# We only test the autograd_function_db tests here.
#
# Usually testing the composition of two transforms is sufficient to convince
# ourselves that an operator is correctly implemented. For the following cases,
# we want to be extra sure, so we send those through some three-transform tests:
# - autograd.Function. The mechanism is via PyDispatcher/HigherOrderOperator, not the
# regular PyTorch dispatcher, so it's good to exercise more caution.
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_vmapvjpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_vmapvjpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
inner_vmapped_fn, primals = normalize_op_input_output2(
inner_vmapped_op,
batched_args,
kwargs,
sample.output_process_fn_grad,
)
inner_mapped_fn, _ = normalize_op_input_output2(
inner_mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
result = inner_mapped_fn(*primals)
cotangents = tree_map(lambda x: torch.rand_like(x), result)
def apply_vjp(fn):
def inner(primals, cotangents):
_, vjp_fn = vjp(fn, *primals)
return vjp_fn(cotangents)
return inner
vjpvmap_fn = apply_vjp(inner_vmapped_fn)
vjpmap_fn = apply_vjp(inner_mapped_fn)
batched_args = (primals, cotangents)
generator = generate_vmap_inputs(batched_args, {})
for batched_args, in_dims, _ in generator:
# strategy: compare vmap(vjp(vmap(op)) vs map(vjp(map(op))
vmapvjpvmap_fn = vmap(vjpvmap_fn, in_dims)
mapvjpmap_fn = functools.partial(loop, vjpmap_fn, in_dims, 0, B)
result = vmapvjpvmap_fn(*batched_args)
expected = mapvjpmap_fn(*batched_args)
self.assertEqual(result, expected)
# See NOTE: [three-transform testing]
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_vjpvmapvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_vjpvmapvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, inner_in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, inner_in_dims)
inner_mapped_op = functools.partial(loop, op, inner_in_dims, 0, B)
generator = generate_vmap_inputs(batched_args, kwargs)
for batched_args, in_dims, kwargs in generator:
# strategy: compare vjp(vmap(vmap(op)) vs vjp(map(map(op))
vmapped_op = vmap(inner_vmapped_op, in_dims)
mapped_op = functools.partial(loop, inner_mapped_op, in_dims, 0, B)
vmapped_fn, primals = normalize_op_input_output2(
vmapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
mapped_fn, _ = normalize_op_input_output2(
mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
result = mapped_fn(*primals)
cotangents = tree_map(lambda x: torch.rand_like(x), result)
_, vjp_fn = vjp(mapped_fn, *primals)
expected_vjps = vjp_fn(cotangents)
_, vjp_fn = vjp(vmapped_fn, *primals)
result_vjps = vjp_fn(cotangents)
self.assertEqual(result_vjps, expected_vjps)
# See NOTE: [three-transform testing]
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_vjpvjpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_vjpvjpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
vjpmap_fn, args = get_vjpfull_variant2(
inner_mapped_op, batched_args, kwargs
)
vjpvmap_fn, _ = get_vjpfull_variant2(
inner_vmapped_op, batched_args, kwargs
)
vjpvjpvmap_fn, new_args = get_vjpfull_variant2(vjpvmap_fn, args, {})
vjpvjpmap_fn, _ = get_vjpfull_variant2(vjpmap_fn, args, {})
expected = vjpvjpmap_fn(*new_args)
result = vjpvjpvmap_fn(*new_args)
self.assertEqual(result, expected)
# We're generally convinced that jvp x vmap works (vmap turns an operator
# into another operator and we test jvp support for operators). So
# we only test it on the things we're not sure about:
# - the autograd.Function <> functorch interaction
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_jvpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_jvpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
jvpvmap_op, primals = get_jvp_variant_primals_tangents2(
inner_vmapped_op,
batched_args,
kwargs,
sample.output_process_fn_grad,
)
jvpmap_op, _ = get_jvp_variant_primals_tangents2(
inner_mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
expected = jvpmap_op(*primals)
result = jvpvmap_op(*primals)
self.assertEqual(result, expected)
# See NOTE: [three-transform testing]
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_jvpvmapvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_jvpvmapvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, inner_in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, inner_in_dims)
inner_mapped_op = functools.partial(loop, op, inner_in_dims, 0, B)
generator = generate_vmap_inputs(batched_args, kwargs)
for batched_args, in_dims, kwargs in generator:
# strategy: compare jvp(vmap(vmap(op)) vs jvp(map(map(op))
vmapped_op = vmap(inner_vmapped_op, in_dims)
mapped_op = functools.partial(loop, inner_mapped_op, in_dims, 0, B)
jvpvmapvmap_fn, primals = get_jvp_variant_primals_tangents2(
vmapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
jvpmapmap_fn, _ = get_jvp_variant_primals_tangents2(
mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
expected = jvpmapmap_fn(*primals)
result = jvpvmapvmap_fn(*primals)
self.assertEqual(result, expected)
# See NOTE: [three-transform testing]
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_vmapjvpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_vmapjvpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
jvpvmap_fn, primals = get_jvp_variant_primals_tangents2(
inner_vmapped_op,
batched_args,
kwargs,
sample.output_process_fn_grad,
)
jvpmap_fn, _ = get_jvp_variant_primals_tangents2(
inner_mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
generator = generate_vmap_inputs(primals, {})
for batched_args, in_dims, _ in generator:
# strategy: compare vmap(jvp(vmap(op)) vs map(jvp(map(op))
vmapjvpvmap_fn = vmap(jvpvmap_fn, in_dims)
mapjvpmap_fn = functools.partial(loop, jvpmap_fn, in_dims, 0, B)
result = vmapjvpvmap_fn(*batched_args)
expected = mapjvpmap_fn(*batched_args)
self.assertEqual(result, expected)
# See NOTE: [three-transform testing]
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_jvpjvpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_jvpjvpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
jvpmap_fn, args = get_jvp_variant_primals_tangents2(
inner_mapped_op, batched_args, kwargs, sample.output_process_fn_grad
)
jvpvmap_fn, _ = get_jvp_variant_primals_tangents2(
inner_vmapped_op,
batched_args,
kwargs,
sample.output_process_fn_grad,
)
jvpjvpvmap_fn, new_args = get_jvp_variant_primals_tangents2(
jvpvmap_fn, args, {}
)
jvpjvpmap_fn, _ = get_jvp_variant_primals_tangents2(jvpmap_fn, args, {})
expected = jvpjvpmap_fn(*new_args)
result = jvpjvpvmap_fn(*new_args)
self.assertEqual(result, expected)
# See NOTE: [three-transform testing]
@ops(autograd_function_db, allowed_dtypes=(torch.float32,))
@skipOps(
"TestOperators",
"test_jvpvjpvmap",
{
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable
},
)
def test_jvpvjpvmap(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
B = 2
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
generator = generate_vmap_inputs(args, kwargs, batch_size=B)
for batched_args, in_dims, kwargs in generator:
inner_vmapped_op = vmap(op, in_dims)
inner_mapped_op = functools.partial(loop, op, in_dims, 0, B)
vjpmap_fn, args = get_vjpfull_variant2(
inner_mapped_op, batched_args, kwargs
)
vjpvmap_fn, _ = get_vjpfull_variant2(
inner_vmapped_op, batched_args, kwargs
)
jvpvjpvmap_fn, new_args = get_jvp_variant_primals_tangents2(
vjpvmap_fn, args, {}
)
jvpvjpmap_fn, _ = get_jvp_variant_primals_tangents2(vjpmap_fn, args, {})
expected = jvpvjpmap_fn(*new_args)
result = jvpvjpvmap_fn(*new_args)
self.assertEqual(result, expected)
def test_data_write_errors_under_transform(self, device):
t = torch.randn(3, 3, device=device)
def fn(t):
t.data = torch.randn(3, 3)
return t.sum()
msg = "mutating directly with `.data` inside functorch transform"
with self.assertRaisesRegex(RuntimeError, msg):
grad(fn)(t)
with self.assertRaisesRegex(RuntimeError, msg):
vjp(fn, t)
with self.assertRaisesRegex(RuntimeError, msg):
jvp(fn, (t,), (torch.randn_like(t),))
def test_tensor_with_scalar_list(self, device):
x = torch.randn((), device=device)
def func_list_of_scalar(x):
return torch.tensor([x], device=device)
def func(x):
return torch.tensor(x, device=device).view(1)
actual_o, actual_fn = vjp(func_list_of_scalar, x)
expected_o, expected_fn = vjp(func, x)
self.assertEqual(actual_o, expected_o)
self.assertEqual(
expected_fn(torch.ones_like(expected_o)),
actual_fn(torch.ones_like(actual_o)),
)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)
if __name__ == "__main__":
run_tests()