| |
| import collections |
| from datetime import timedelta |
| import enum |
| |
| import torch |
| import torch.distributed as dist |
| |
| from . import api |
| from . import constants as rpc_constants |
| |
| |
| BackendValue = collections.namedtuple( |
| "BackendValue", ["construct_rpc_backend_options_handler", "init_backend_handler"] |
| ) |
| |
| |
| def _backend_type_repr(self): |
| return "BackendType." + self.name |
| |
| |
| _backend_type_doc = """ |
| An enum class of available backends. |
| |
| PyTorch ships with two builtin backends: ``BackendType.TENSORPIPE`` and |
| ``BackendType.PROCESS_GROUP``. Additional ones can be registered using the |
| :func:`~torch.distributed.rpc.backend_registry.register_backend` function. |
| """ |
| |
| # Create an enum type, `BackendType`, with empty members. |
| # Can't handle Function Enum API (mypy bug #9079) |
| BackendType = enum.Enum(value="BackendType", names=dict()) # type: ignore[misc] |
| # Unable to assign a function a method (mypy bug #2427) |
| BackendType.__repr__ = _backend_type_repr # type: ignore[assignment] |
| BackendType.__doc__ = _backend_type_doc |
| |
| def backend_registered(backend_name): |
| """ |
| Checks if backend_name is registered as an RPC backend. |
| |
| Args: |
| backend_name (str): string to identify the RPC backend. |
| Returns: |
| True if the backend has been registered with ``register_backend``, else |
| False. |
| """ |
| return backend_name in BackendType.__members__.keys() |
| |
| |
| def register_backend( |
| backend_name, construct_rpc_backend_options_handler, init_backend_handler |
| ): |
| """Registers a new RPC backend. |
| |
| Args: |
| backend_name (str): backend string to identify the handler. |
| construct_rpc_backend_options_handler (function): |
| Handler that is invoked when |
| rpc_backend.construct_rpc_backend_options(**dict) is called. |
| init_backend_handler (function): Handler that is invoked when the |
| `_init_rpc_backend()` function is called with a backend. |
| This returns the agent. |
| """ |
| global BackendType |
| if backend_registered(backend_name): |
| raise RuntimeError("RPC backend {}: already registered".format(backend_name)) |
| # Create a new enum type, `BackendType`, with extended members. |
| existing_enum_dict = {member.name: member.value for member in BackendType} |
| extended_enum_dict = dict( |
| { |
| backend_name: BackendValue( |
| construct_rpc_backend_options_handler=construct_rpc_backend_options_handler, |
| init_backend_handler=init_backend_handler, |
| ) |
| }, |
| **existing_enum_dict |
| ) |
| # Can't handle Function Enum API (mypy bug #9079) |
| BackendType = enum.Enum(value="BackendType", names=extended_enum_dict) # type: ignore[misc] |
| # Unable to assign a function a method (mypy bug #2427) |
| BackendType.__repr__ = _backend_type_repr # type: ignore[assignment] |
| BackendType.__doc__ = _backend_type_doc |
| return BackendType[backend_name] |
| |
| |
| def construct_rpc_backend_options( |
| backend, |
| rpc_timeout=rpc_constants.DEFAULT_RPC_TIMEOUT_SEC, |
| init_method=rpc_constants.DEFAULT_INIT_METHOD, |
| **kwargs |
| ): |
| |
| return backend.value.construct_rpc_backend_options_handler( |
| rpc_timeout, init_method, **kwargs |
| ) |
| |
| |
| def init_backend(backend, *args, **kwargs): |
| return backend.value.init_backend_handler(*args, **kwargs) |
| |
| |
| def _process_group_construct_rpc_backend_options_handler( |
| rpc_timeout, |
| init_method, |
| num_send_recv_threads=rpc_constants.DEFAULT_NUM_SEND_RECV_THREADS, |
| **kwargs |
| ): |
| from . import ProcessGroupRpcBackendOptions |
| |
| return ProcessGroupRpcBackendOptions( |
| rpc_timeout=rpc_timeout, |
| init_method=init_method, |
| num_send_recv_threads=num_send_recv_threads |
| ) |
| |
| def _init_process_group(store, rank, world_size): |
| # Initialize ProcessGroup. |
| process_group_timeout = rpc_constants.DEFAULT_PROCESS_GROUP_TIMEOUT |
| |
| # We're using a bunch of private APIs here since `new_group` requires the |
| # default group to be initialized. |
| group = dist.ProcessGroupGloo(store, rank, world_size, process_group_timeout) |
| |
| assert group is not None, "Failed to initialize default ProcessGroup." |
| |
| if (rank != -1) and (rank != group.rank()): |
| raise RuntimeError( |
| "rank argument {} doesn't match pg rank {}".format(rank, group.rank()) |
| ) |
| if (world_size != -1) and (world_size != group.size()): |
| raise RuntimeError( |
| "world_size argument {} doesn't match pg size {}".format( |
| world_size, group.size() |
| ) |
| ) |
| return group |
| |
| def _process_group_init_backend_handler( |
| store, name, rank, world_size, rpc_backend_options |
| ): |
| from . import ProcessGroupRpcBackendOptions |
| from . import ProcessGroupAgent |
| |
| if not isinstance(store, dist.Store): |
| raise TypeError("`store` must be a c10d::Store. {}".format(store)) |
| |
| if not isinstance( |
| rpc_backend_options, ProcessGroupRpcBackendOptions |
| ): |
| raise TypeError( |
| "`rpc_backend_options` must be a `ProcessGroupRpcBackendOptions`. {}".format( |
| rpc_backend_options |
| ) |
| ) |
| |
| group = _init_process_group(store, rank, world_size) |
| |
| # TODO: add try-except and destroy _agent in all processes if any fails. |
| return ProcessGroupAgent( |
| store, |
| name, |
| group, |
| rpc_backend_options.num_send_recv_threads, |
| timedelta(seconds=rpc_backend_options.rpc_timeout), |
| ) |
| |
| |
| register_backend( |
| "PROCESS_GROUP", |
| _process_group_construct_rpc_backend_options_handler, |
| _process_group_init_backend_handler, |
| ) |
| |
| def _tensorpipe_construct_rpc_backend_options_handler( |
| rpc_timeout, |
| init_method, |
| num_worker_threads=rpc_constants.DEFAULT_NUM_WORKER_THREADS, |
| _transports=None, |
| _channels=None, |
| **kwargs |
| ): |
| from . import TensorPipeRpcBackendOptions |
| |
| return TensorPipeRpcBackendOptions( |
| rpc_timeout=rpc_timeout, |
| init_method=init_method, |
| num_worker_threads=num_worker_threads, |
| _transports=_transports, |
| _channels=_channels, |
| ) |
| |
| |
| # detect if any worker has invalid device_map configurations, and return |
| # names of failed workers |
| def _tensorpipe_check_device_maps(agent, device_maps): |
| if device_maps is None: |
| device_maps = {} |
| |
| def check_one_worker(name, device_maps, all_device_counts): |
| device_count = all_device_counts[name] |
| wrong_worker_names = set(device_maps) - set(all_device_counts) |
| if wrong_worker_names: |
| raise ValueError(f"Wrong worker names: {wrong_worker_names}") |
| for worker_name in all_device_counts: |
| remote_device_count = all_device_counts[worker_name] |
| if worker_name in device_maps: |
| device_map = device_maps[worker_name] |
| key_set = set(device_map.keys()) |
| val_set = set(device_map.values()) |
| if not all([ |
| len(device_map) == len(key_set), |
| len(device_map) == len(val_set), # check 1-to-1 mapping |
| min(key_set) >= 0, |
| max(key_set) < device_count, # check local range |
| min(val_set) >= 0, |
| max(val_set) < remote_device_count # check remote range |
| ]): |
| raise ValueError( |
| f"Invalid device_map configuration on {name}:\n" |
| f"device_maps = {device_maps}" |
| ) |
| |
| gathered = api._all_gather([torch.cuda.device_count(), device_maps]) |
| all_device_counts = {name: gathered[name][0] for name in gathered} |
| all_device_maps = {name: gathered[name][1] for name in gathered} |
| for worker_name in all_device_maps: |
| worker_device_maps = all_device_maps[worker_name] |
| check_one_worker(worker_name, worker_device_maps, all_device_counts) |
| |
| # passed all checked, construct reverse mapping for return values |
| reverse_device_maps = {} |
| local_name = api.get_worker_info().name |
| for worker_name in all_device_maps: |
| remote_device_maps = all_device_maps[worker_name] |
| if local_name in remote_device_maps: |
| remote_device_map = remote_device_maps[local_name] |
| reverse_device_maps[worker_name] = { |
| remote_device_map[k]: k for k in remote_device_map |
| } |
| |
| agent._set_reverse_device_maps(reverse_device_maps) |
| |
| |
| def _tensorpipe_init_backend_handler(store, name, rank, world_size, rpc_backend_options): |
| from . import TensorPipeRpcBackendOptions |
| from . import TensorPipeAgent |
| |
| if not isinstance(store, dist.Store): |
| raise TypeError("`store` must be a c10d::Store. {}".format(store)) |
| |
| if not isinstance( |
| rpc_backend_options, TensorPipeRpcBackendOptions |
| ): |
| raise TypeError( |
| "`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`. {}".format( |
| rpc_backend_options |
| ) |
| ) |
| |
| if torch.cuda.is_available(): |
| # It's necessary to initialize PyTorch CUDA states here (e.g., |
| # CUDACachingAllocator). If this is missing, we could hit errors like |
| # "allocator not initialized", because other processes might send |
| # CUDA-related RPC request to this process before user code in this |
| # process initializes its PyTorch CUDA states. |
| torch.cuda.init() |
| |
| # The agent's join method is required to behave like a barrier and perform |
| # collective operations, for which it relies on a process group, instead of |
| # re-implementing this on top of RPCs. |
| |
| group = _init_process_group(store, rank, world_size) |
| |
| # TODO: add try-except and destroy _agent in all processes if any fails. |
| agent = TensorPipeAgent( |
| store, name, rank, world_size, group, rpc_backend_options |
| ) |
| |
| api._init_rpc_states(agent) |
| |
| try: |
| _tensorpipe_check_device_maps(agent, rpc_backend_options.device_maps) |
| agent.join() |
| except Exception: |
| api.shutdown() |
| raise |
| |
| return agent |
| |
| |
| register_backend( |
| "TENSORPIPE", |
| _tensorpipe_construct_rpc_backend_options_handler, |
| _tensorpipe_init_backend_handler, |
| ) |