blob: df1f59a107a21af0f2276d80ae9575f427d489e1 [file] [log] [blame]
import sys
from typing import Optional, Tuple
import torch
from torch._C import _onnx as _C_onnx
from torch.onnx import (
_type_utils,
errors,
symbolic_helper,
symbolic_opset9 as opset9,
utils,
)
from torch.onnx._internal import _beartype
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in symbolic_helper.py
# This file exports ONNX ops for opset 12
__all__ = [
"argmax",
"argmin",
"binary_cross_entropy_with_logits",
"celu",
"cross_entropy_loss",
"dropout",
"einsum",
"ge",
"le",
"native_dropout",
"nll_loss",
"nll_loss2d",
"nll_loss_nd",
"outer",
"pow",
"tensordot",
"unfold",
]
@_beartype.beartype
def _einsum_helper(g, equation, tensors):
if not tensors:
raise RuntimeError("Einsum inputs are empty.")
# ONNX does not support bool for Einsum inputs.
if symbolic_helper._is_bool(tensors[0]):
tensors = [
g.op("Cast", tensor, to_i=_C_onnx.TensorProtoDataType.INT64)
for tensor in tensors
]
return g.op(
"Cast",
g.op("Einsum", *tensors, equation_s=equation),
to_i=_C_onnx.TensorProtoDataType.BOOL,
)
else:
return g.op("Einsum", *tensors, equation_s=equation)
@symbolic_helper.parse_args("s", "v")
@_beartype.beartype
def einsum(g, equation, tensor_list):
tensors = symbolic_helper._unpack_list(tensor_list)
return _einsum_helper(g, equation, tensors)
@symbolic_helper.parse_args("v", "v")
@_beartype.beartype
def outer(g, input, other):
# make sure to cast other to self's type
if other.type().scalarType() != input.type().scalarType():
other = g.op(
"Cast",
other,
to_i=_type_utils.JitScalarType.from_name(
input.type().scalarType()
).onnx_type(),
)
return _einsum_helper(g, "i,j->ij", [input, other])
@_beartype.beartype
def _dropout_returns_masked_input_and_mask(
g, input: torch._C.Value, p: float, train: bool
) -> Tuple[torch._C.Value, Optional[torch._C.Value]]:
symbolic_helper.check_training_mode(train, "dropout")
# In eval mode, dropout is non-op. That is, if the node's
# train param is set to False, dropout just returns its inputs.
if not train:
return input, None
p = g.op("Constant", value_t=torch.tensor(p))
t = g.op("Constant", value_t=torch.tensor(train, dtype=torch.bool))
r, mask = g.op("Dropout", input, p, t, outputs=2)
return r, mask
@symbolic_helper.parse_args("v", "f", "b")
@_beartype.beartype
def dropout(g, input, p, train):
masked, _ = _dropout_returns_masked_input_and_mask(g, input, p, train)
return masked
@symbolic_helper.parse_args("v", "f", "b")
@_beartype.beartype
def native_dropout(g, input, p, train):
return _dropout_returns_masked_input_and_mask(g, input, p, train)
@_beartype.beartype
def nll_loss(g, self, target, weight, reduction, ignore_index):
# none reduction : onnx::Constant[value={0}]
# mean reduction : onnx::Constant[value={1}]
# sum reduction : onnx::Constant[value={2}]
reduction = symbolic_helper._maybe_get_const(reduction, "i")
reduction_vals = ["none", "mean", "sum"]
reduction = reduction_vals[reduction]
# in onnx NegativeLogLikelihoodLoss specification, ignore_index is optional without default value.
# therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
if weight.node().mustBeNone():
nllloss = g.op(
"NegativeLogLikelihoodLoss",
self,
target,
reduction_s=reduction,
ignore_index_i=ignore_index,
)
else:
nllloss = g.op(
"NegativeLogLikelihoodLoss",
self,
target,
weight,
reduction_s=reduction,
ignore_index_i=ignore_index,
)
return nllloss
@_beartype.beartype
def nll_loss2d(g, self, target, weight, reduction, ignore_index):
return nll_loss(g, self, target, weight, reduction, ignore_index)
@_beartype.beartype
def nll_loss_nd(g, self, target, weight, reduction, ignore_index):
return nll_loss(g, self, target, weight, reduction, ignore_index)
@_beartype.beartype
def cross_entropy_loss(
g, self, target, weight, reduction, ignore_index, label_smoothing
):
# none reduction : onnx::Constant[value={0}]
# mean reduction : onnx::Constant[value={1}]
# sum reduction : onnx::Constant[value={2}]
reduction = symbolic_helper._maybe_get_const(reduction, "i")
reduction_vals = ["none", "mean", "sum"]
reduction = reduction_vals[reduction]
label_smoothing = symbolic_helper._maybe_get_const(label_smoothing, "f")
if label_smoothing is not None and label_smoothing > 0.0:
raise errors.SymbolicValueError(
"Unsupported: ONNX does not support label_smoothing", self
)
# in onnx SoftmaxCrossEntropyLoss specification, ignore_index is optional without default value.
# therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
if weight.node().mustBeNone():
celoss = g.op(
"SoftmaxCrossEntropyLoss",
self,
target,
reduction_s=reduction,
ignore_index_i=ignore_index,
)
else:
celoss = g.op(
"SoftmaxCrossEntropyLoss",
self,
target,
weight,
reduction_s=reduction,
ignore_index_i=ignore_index,
)
return celoss
@symbolic_helper.parse_args("v", "v", "v", "v", "i")
@_beartype.beartype
def binary_cross_entropy_with_logits(g, input, target, weight, pos_weight, reduction):
p = g.op("Constant", value_t=torch.tensor([1]))
sig_x = opset9.sigmoid(g, input)
log_sig_x = opset9.log(g, sig_x)
sub_1_x = opset9.sub(g, p, sig_x)
sub_1_y = opset9.sub(g, p, target)
log_1_x = opset9.log(g, sub_1_x)
if pos_weight is None or symbolic_helper._is_none(pos_weight):
output = opset9.neg(
g,
opset9.add(
g, opset9.mul(g, target, log_sig_x), opset9.mul(g, sub_1_y, log_1_x)
),
)
else:
output = opset9.neg(
g,
opset9.add(
g,
opset9.mul(g, opset9.mul(g, target, log_sig_x), pos_weight),
opset9.mul(g, sub_1_y, log_1_x),
),
)
if weight is not None and not symbolic_helper._is_none(weight):
output = opset9.mul(g, weight, output)
reduction = symbolic_helper._maybe_get_const(reduction, "i")
if reduction == 0:
return output
elif reduction == 1:
return g.op("ReduceMean", output, keepdims_i=0)
elif reduction == 2:
return g.op("ReduceSum", output, keepdims_i=0)
else:
return symbolic_helper._onnx_unsupported(
"binary_cross_entropy_with_logits with reduction other than none, mean, or sum",
input,
)
@_beartype.beartype
def celu(g, self, alpha):
alpha = symbolic_helper._maybe_get_const(alpha, "f")
# if the input is of type double cast it to float
if self.type().scalarType() == "Double":
self = g.op("Cast", self, to_i=_C_onnx.TensorProtoDataType.FLOAT)
out = g.op("Celu", self, alpha_f=alpha)
return g.op("Cast", out, to_i=_C_onnx.TensorProtoDataType.DOUBLE)
return g.op("Celu", self, alpha_f=alpha)
@symbolic_helper.parse_args("v", "v", "b")
@_beartype.beartype
def argmax(g, input: torch._C.Value, dim: torch._C.Value, keepdim: bool):
return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMax")
@symbolic_helper.parse_args("v", "v", "b")
@_beartype.beartype
def argmin(g, input: torch._C.Value, dim: torch._C.Value, keepdim: bool):
return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMin")
@_beartype.beartype
def pow(g, self, exponent):
return g.op("Pow", self, exponent)
@_beartype.beartype
def ge(g, input, other):
return g.op("GreaterOrEqual", input, other)
@_beartype.beartype
def le(g, input, other):
return g.op("LessOrEqual", input, other)
@symbolic_helper.parse_args("v", "i", "v", "v")
@_beartype.beartype
def unfold(g, input, dimension, size, step):
const_size = symbolic_helper._maybe_get_const(size, "i")
const_step = symbolic_helper._maybe_get_const(step, "i")
if not symbolic_helper._is_value(const_size) and not symbolic_helper._is_value(
const_step
):
return opset9.unfold(g, input, dimension, const_size, const_step)
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("unfold", input, dimension_i=dimension, size_i=size, step_i=step)
sizedim = symbolic_helper._get_tensor_dim_size(input, dimension)
if sizedim is not None:
low_start = g.op("Constant", value_t=torch.tensor(0))
low_end = g.op("Constant", value_t=torch.tensor(sizedim))
hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
low_indices = g.op("Range", low_start, low_end, step)
hi_indices = g.op("Range", size, hi_end, step)
low_size = symbolic_helper._size_helper(
g, low_indices, g.op("Constant", value_t=torch.tensor(0))
)
hi_size = symbolic_helper._size_helper(
g, hi_indices, g.op("Constant", value_t=torch.tensor(0))
)
ndim = symbolic_helper._get_tensor_rank(input)
assert ndim is not None
perm = list(range(0, ndim))
perm.append(perm.pop(dimension))
unsqueeze_list = []
loop_condition = g.op("Constant", value_t=torch.tensor(1))
loop_condition = g.op("Cast", loop_condition, to_i=9)
loop_len = g.op("Min", low_size, hi_size)
loop = g.op("Loop", loop_len, loop_condition)
loop_block = utils._add_block(loop.node())
block_input_iter = utils._add_input_to_block(loop_block)
cond = utils._add_input_to_block(loop_block)
starts = loop_block.op("Gather", low_indices, block_input_iter)
ends = loop_block.op("Gather", hi_indices, block_input_iter)
axes = loop_block.op("Constant", value_t=torch.tensor([2]))
starts = symbolic_helper._unsqueeze_helper(loop_block, starts, [0])
ends = symbolic_helper._unsqueeze_helper(loop_block, ends, [0])
stack = loop_block.op("Slice", input, starts, ends, axes)
unsqueeze = symbolic_helper._unsqueeze_helper(
loop_block, loop_block.op("Transpose", stack, perm_i=perm), [dimension]
)
unsqueeze_list.append(unsqueeze)
concat = loop_block.op("Concat", *unsqueeze_list, axis_i=0)
cond_out = loop_block.op("Cast", loop_condition, to_i=9)
utils._add_output_to_block(loop_block, cond_out)
utils._add_output_to_block(loop_block, concat)
loop_output = loop.node().output()
perm = [0, 1, 2, 3, 4]
perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
transpose = g.op("Transpose", loop_output, perm_i=perm)
squeeze = symbolic_helper._squeeze_helper(g, transpose, [0])
return squeeze
else:
return symbolic_helper._unimplemented("Unfold", "input size not accessible")
@symbolic_helper.parse_args("v", "v", "is", "is", "v")
@_beartype.beartype
def tensordot(g, input_a, input_b, dims_a, dims_b, out=None):
if out is not None:
symbolic_helper._unimplemented(
"Tensordot", "Out parameter is not supported for tensordot."
)
dim_count_a = symbolic_helper._get_tensor_rank(input_a)
if dim_count_a is None:
raise errors.SymbolicValueError(
"Unsupported: ONNX export of tensordot for tensor(input_a) of unknown rank.",
input_a,
)
dim_count_b = symbolic_helper._get_tensor_rank(input_b)
if dim_count_b is None:
raise errors.SymbolicValueError(
"Unsupported: ONNX export of tensordot for tensor(input_b) of unknown rank.",
input_b,
)
dims_a = [
(dims_a[i] + dim_count_a) if (dims_a[i] < 0) else dims_a[i]
for i in range(len(dims_a))
]
dims_b = [
(dims_b[i] + dim_count_b) if (dims_b[i] < 0) else dims_b[i]
for i in range(len(dims_b))
]
left_dims_a = [i for i in range(dim_count_a) if (i not in dims_a)]
left_dims_b = [i for i in range(dim_count_b) if (i not in dims_b)]
new_input_a = opset9.permute(g, input_a, left_dims_a + dims_a)
new_input_b = opset9.permute(g, input_b, dims_b + left_dims_b)
input_shape = g.op("Shape", new_input_a)
left_sizes_a = symbolic_helper._slice_helper(
g, input_shape, axes=[0], starts=[0], ends=[len(left_dims_a)]
)
shape_sizes = [
left_sizes_a,
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
]
output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
input_shape = g.op("Shape", output_a)
slices = symbolic_helper._slice_helper(
g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
)
shape_sizes = [
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
slices,
]
output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
input_shape = g.op("Shape", new_input_b)
left_sizes_b = symbolic_helper._slice_helper(
g, input_shape, axes=[0], starts=[len(dims_b)], ends=[sys.maxsize]
)
slices = symbolic_helper._slice_helper(
g, input_shape, axes=[0], starts=[0], ends=[len(dims_b)]
)
shape_sizes = [
slices,
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
]
output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
input_shape = g.op("Shape", output_b)
slices = symbolic_helper._slice_helper(
g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
)
shape_sizes = [
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
slices,
]
output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
output = einsum(g, "ij,jk->ik", g.op("prim::ListConstruct", *[output_a, output_b]))
shape_sizes = [left_sizes_a, left_sizes_b]
return opset9._reshape_from_tensor(g, output, shape_sizes)