|  |  | 
|  | r""" | 
|  | The torch package contains data structures for multi-dimensional | 
|  | tensors and defines mathematical operations over these tensors. | 
|  | Additionally, it provides many utilities for efficient serializing of | 
|  | Tensors and arbitrary types, and other useful utilities. | 
|  |  | 
|  | It has a CUDA counterpart, that enables you to run your tensor computations | 
|  | on an NVIDIA GPU with compute capability >= 3.0. | 
|  | """ | 
|  |  | 
|  | import os | 
|  | import sys | 
|  | import platform | 
|  | import textwrap | 
|  | import ctypes | 
|  | import inspect | 
|  | if sys.version_info < (3,): | 
|  | raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.") | 
|  |  | 
|  | from ._utils import _import_dotted_name, classproperty | 
|  | from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \ | 
|  | USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS | 
|  | # TODO(torch_deploy) figure out how to freeze version.py in fbcode build | 
|  | if sys.executable == 'torch_deploy': | 
|  | __version__ = "torch-deploy-1.8" | 
|  | else: | 
|  | from .torch_version import __version__ as __version__ | 
|  |  | 
|  | from ._six import string_classes as _string_classes | 
|  |  | 
|  | from typing import Set, Type, TYPE_CHECKING, Union, Callable | 
|  | import builtins | 
|  |  | 
|  | __all__ = [ | 
|  | 'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type', | 
|  | 'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed', | 
|  | 'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul', | 
|  | 'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode', | 
|  | 'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage', | 
|  | 'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage', | 
|  | 'TypedStorage', 'UntypedStorage', | 
|  | 'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor', | 
|  | 'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor', | 
|  | 'lobpcg', 'use_deterministic_algorithms', | 
|  | 'are_deterministic_algorithms_enabled', | 
|  | 'is_deterministic_algorithms_warn_only_enabled', | 
|  | 'set_deterministic_debug_mode', 'get_deterministic_debug_mode', | 
|  | 'set_float32_matmul_precision', 'get_float32_matmul_precision', | 
|  | 'set_warn_always', 'is_warn_always_enabled', | 
|  | ] | 
|  |  | 
|  | ################################################################################ | 
|  | # Load the extension module | 
|  | ################################################################################ | 
|  |  | 
|  | if sys.platform == 'win32': | 
|  | pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files') | 
|  | py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin') | 
|  | th_dll_path = os.path.join(os.path.dirname(__file__), 'lib') | 
|  |  | 
|  | # When users create a virtualenv that inherits the base environment, | 
|  | # we will need to add the corresponding library directory into | 
|  | # DLL search directories. Otherwise, it will rely on `PATH` which | 
|  | # is dependent on user settings. | 
|  | if sys.exec_prefix != sys.base_exec_prefix: | 
|  | base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin') | 
|  | else: | 
|  | base_py_dll_path = '' | 
|  |  | 
|  | dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path])) | 
|  |  | 
|  | if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]): | 
|  | nvtoolsext_dll_path = os.path.join( | 
|  | os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64') | 
|  | else: | 
|  | nvtoolsext_dll_path = '' | 
|  |  | 
|  | from .version import cuda as cuda_version | 
|  | import glob | 
|  | if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]): | 
|  | cuda_version_1 = cuda_version.replace('.', '_') | 
|  | cuda_path_var = 'CUDA_PATH_V' + cuda_version_1 | 
|  | default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version) | 
|  | cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin') | 
|  | else: | 
|  | cuda_path = '' | 
|  |  | 
|  | dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path])) | 
|  |  | 
|  | kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True) | 
|  | with_load_library_flags = hasattr(kernel32, 'AddDllDirectory') | 
|  | prev_error_mode = kernel32.SetErrorMode(0x0001) | 
|  |  | 
|  | kernel32.LoadLibraryW.restype = ctypes.c_void_p | 
|  | if with_load_library_flags: | 
|  | kernel32.AddDllDirectory.restype = ctypes.c_void_p | 
|  | kernel32.LoadLibraryExW.restype = ctypes.c_void_p | 
|  |  | 
|  | for dll_path in dll_paths: | 
|  | if sys.version_info >= (3, 8): | 
|  | os.add_dll_directory(dll_path) | 
|  | elif with_load_library_flags: | 
|  | res = kernel32.AddDllDirectory(dll_path) | 
|  | if res is None: | 
|  | err = ctypes.WinError(ctypes.get_last_error()) | 
|  | err.strerror += f' Error adding "{dll_path}" to the DLL directories.' | 
|  | raise err | 
|  |  | 
|  | try: | 
|  | ctypes.CDLL('vcruntime140.dll') | 
|  | ctypes.CDLL('msvcp140.dll') | 
|  | ctypes.CDLL('vcruntime140_1.dll') | 
|  | except OSError: | 
|  | print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure. | 
|  | It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''') | 
|  |  | 
|  | dlls = glob.glob(os.path.join(th_dll_path, '*.dll')) | 
|  | path_patched = False | 
|  | for dll in dlls: | 
|  | is_loaded = False | 
|  | if with_load_library_flags: | 
|  | res = kernel32.LoadLibraryExW(dll, None, 0x00001100) | 
|  | last_error = ctypes.get_last_error() | 
|  | if res is None and last_error != 126: | 
|  | err = ctypes.WinError(last_error) | 
|  | err.strerror += f' Error loading "{dll}" or one of its dependencies.' | 
|  | raise err | 
|  | elif res is not None: | 
|  | is_loaded = True | 
|  | if not is_loaded: | 
|  | if not path_patched: | 
|  | os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']]) | 
|  | path_patched = True | 
|  | res = kernel32.LoadLibraryW(dll) | 
|  | if res is None: | 
|  | err = ctypes.WinError(ctypes.get_last_error()) | 
|  | err.strerror += f' Error loading "{dll}" or one of its dependencies.' | 
|  | raise err | 
|  |  | 
|  | kernel32.SetErrorMode(prev_error_mode) | 
|  |  | 
|  |  | 
|  | # See Note [Global dependencies] | 
|  | def _load_global_deps(): | 
|  | if platform.system() == 'Windows' or sys.executable == 'torch_deploy': | 
|  | return | 
|  |  | 
|  | lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so') | 
|  | here = os.path.abspath(__file__) | 
|  | lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name) | 
|  |  | 
|  | ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) | 
|  |  | 
|  |  | 
|  | if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \ | 
|  | platform.system() != 'Windows': | 
|  | # Do it the hard way.  You might want to load libtorch with RTLD_GLOBAL in a | 
|  | # few circumstances: | 
|  | # | 
|  | #   1. You're in a build environment (e.g., fbcode) where | 
|  | #      libtorch_global_deps is not available, but you still need | 
|  | #      to get mkl to link in with RTLD_GLOBAL or it will just | 
|  | #      not work. | 
|  | # | 
|  | #   2. You're trying to run PyTorch under UBSAN and you need | 
|  | #      to ensure that only one copy of libtorch is loaded, so | 
|  | #      vptr checks work properly | 
|  | # | 
|  | # If you're using this setting, you must verify that all the libraries | 
|  | # you load consistently use the same libstdc++, or you may have | 
|  | # mysterious segfaults. | 
|  | # | 
|  | old_flags = sys.getdlopenflags() | 
|  | sys.setdlopenflags(os.RTLD_GLOBAL | os.RTLD_LAZY) | 
|  | from torch._C import *  # noqa: F403 | 
|  | sys.setdlopenflags(old_flags) | 
|  | del old_flags | 
|  |  | 
|  | else: | 
|  | # Easy way.  You want this most of the time, because it will prevent | 
|  | # C++ symbols from libtorch clobbering C++ symbols from other | 
|  | # libraries, leading to mysterious segfaults. | 
|  | # | 
|  | # If building in an environment where libtorch_global_deps isn't available | 
|  | # like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will | 
|  | # want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False | 
|  | # | 
|  | # See Note [Global dependencies] | 
|  | if USE_GLOBAL_DEPS: | 
|  | _load_global_deps() | 
|  | from torch._C import *  # noqa: F403 | 
|  |  | 
|  | # Appease the type checker; ordinarily this binding is inserted by the | 
|  | # torch._C module initialization code in C | 
|  | if TYPE_CHECKING: | 
|  | import torch._C as _C | 
|  |  | 
|  | # Check to see if we can load C extensions, and if not provide some guidance | 
|  | # on what the problem might be. | 
|  | try: | 
|  | # _initExtension is chosen (arbitrarily) as a sentinel. | 
|  | from torch._C import _initExtension | 
|  | except ImportError: | 
|  | import torch._C as _C_for_compiled_check | 
|  |  | 
|  | # The __file__ check only works for Python 3.7 and above. | 
|  | if sys.version_info >= (3, 7) and _C_for_compiled_check.__file__ is None: | 
|  | raise ImportError(textwrap.dedent(''' | 
|  | Failed to load PyTorch C extensions: | 
|  | It appears that PyTorch has loaded the `torch/_C` folder | 
|  | of the PyTorch repository rather than the C extensions which | 
|  | are expected in the `torch._C` namespace. This can occur when | 
|  | using the `install` workflow. e.g. | 
|  | $ python setup.py install && python -c "import torch" | 
|  |  | 
|  | This error can generally be solved using the `develop` workflow | 
|  | $ python setup.py develop && python -c "import torch"  # This should succeed | 
|  | or by running Python from a different directory. | 
|  | ''').strip()) from None | 
|  | raise  # If __file__ is not None the cause is unknown, so just re-raise. | 
|  |  | 
|  | for name in dir(_C): | 
|  | if name[0] != '_' and not name.endswith('Base'): | 
|  | __all__.append(name) | 
|  | obj = getattr(_C, name) | 
|  | if (isinstance(obj, Callable) or inspect.isclass(obj)):  # type: ignore[arg-type] | 
|  | if (obj.__module__ != 'torch'): | 
|  | # TODO: fix their module from C++ side | 
|  | if name not in ['DisableTorchFunction', 'Generator']: | 
|  | obj.__module__ = 'torch' | 
|  |  | 
|  | if not TYPE_CHECKING: | 
|  | # issue 38137 and python issue 43367. Submodules of a C extension are | 
|  | # non-standard, and attributes of those submodules cannot be pickled since | 
|  | # pickle expect to be able to import them as "from _C.sub import attr" | 
|  | # which fails with "_C is not a package | 
|  | for attr in dir(_C): | 
|  | candidate = getattr(_C, attr) | 
|  | if type(candidate) is type(_C): | 
|  | # submodule | 
|  | if f'torch._C.{attr}' not in sys.modules: | 
|  | sys.modules[f'torch._C.{attr}'] = candidate | 
|  |  | 
|  |  | 
|  | ################################################################################ | 
|  | # Define basic utilities | 
|  | ################################################################################ | 
|  |  | 
|  |  | 
|  | def typename(o): | 
|  | if isinstance(o, torch.Tensor): | 
|  | return o.type() | 
|  |  | 
|  | module = '' | 
|  | class_name = '' | 
|  | if hasattr(o, '__module__') and o.__module__ != 'builtins' \ | 
|  | and o.__module__ != '__builtin__' and o.__module__ is not None: | 
|  | module = o.__module__ + '.' | 
|  |  | 
|  | if hasattr(o, '__qualname__'): | 
|  | class_name = o.__qualname__ | 
|  | elif hasattr(o, '__name__'): | 
|  | class_name = o.__name__ | 
|  | else: | 
|  | class_name = o.__class__.__name__ | 
|  |  | 
|  | return module + class_name | 
|  |  | 
|  |  | 
|  | def is_tensor(obj): | 
|  | r"""Returns True if `obj` is a PyTorch tensor. | 
|  |  | 
|  | Note that this function is simply doing ``isinstance(obj, Tensor)``. | 
|  | Using that ``isinstance`` check is better for typechecking with mypy, | 
|  | and more explicit - so it's recommended to use that instead of | 
|  | ``is_tensor``. | 
|  |  | 
|  | Args: | 
|  | obj (Object): Object to test | 
|  | Example:: | 
|  |  | 
|  | >>> x=torch.tensor([1,2,3]) | 
|  | >>> torch.is_tensor(x) | 
|  | True | 
|  |  | 
|  | """ | 
|  | return isinstance(obj, torch.Tensor) | 
|  |  | 
|  |  | 
|  | def is_storage(obj): | 
|  | r"""Returns True if `obj` is a PyTorch storage object. | 
|  |  | 
|  | Args: | 
|  | obj (Object): Object to test | 
|  | """ | 
|  | return type(obj) in _storage_classes | 
|  |  | 
|  |  | 
|  | def set_default_tensor_type(t): | 
|  | r"""Sets the default ``torch.Tensor`` type to floating point tensor type | 
|  | ``t``. This type will also be used as default floating point type for | 
|  | type inference in :func:`torch.tensor`. | 
|  |  | 
|  | The default floating point tensor type is initially ``torch.FloatTensor``. | 
|  |  | 
|  | Args: | 
|  | t (type or string): the floating point tensor type or its name | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?") | 
|  | >>> torch.tensor([1.2, 3]).dtype    # initial default for floating point is torch.float32 | 
|  | torch.float32 | 
|  | >>> torch.set_default_tensor_type(torch.DoubleTensor) | 
|  | >>> torch.tensor([1.2, 3]).dtype    # a new floating point tensor | 
|  | torch.float64 | 
|  |  | 
|  | """ | 
|  | if isinstance(t, _string_classes): | 
|  | t = _import_dotted_name(t) | 
|  | _C._set_default_tensor_type(t) | 
|  |  | 
|  |  | 
|  | def set_default_dtype(d): | 
|  | r""" | 
|  |  | 
|  | Sets the default floating point dtype to :attr:`d`. Supports torch.float32 | 
|  | and torch.float64 as inputs. Other dtypes may be accepted without complaint | 
|  | but are not supported and are unlikely to work as expected. | 
|  |  | 
|  | When PyTorch is initialized its default floating point dtype is torch.float32, | 
|  | and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like | 
|  | type inference. The default floating point dtype is used to: | 
|  |  | 
|  | 1. Implicitly determine the default complex dtype. When the default floating point | 
|  | type is float32 the default complex dtype is complex64, and when the default | 
|  | floating point type is float64 the default complex type is complex128. | 
|  | 2. Infer the dtype for tensors constructed using Python floats or complex Python | 
|  | numbers. See examples below. | 
|  | 3. Determine the result of type promotion between bool and integer tensors and | 
|  | Python floats and complex Python numbers. | 
|  |  | 
|  | Args: | 
|  | d (:class:`torch.dtype`): the floating point dtype to make the default. | 
|  | Either torch.float32 or torch.float64. | 
|  |  | 
|  | Example: | 
|  | >>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?") | 
|  | >>> # initial default for floating point is torch.float32 | 
|  | >>> # Python floats are interpreted as float32 | 
|  | >>> torch.tensor([1.2, 3]).dtype | 
|  | torch.float32 | 
|  | >>> # initial default for floating point is torch.complex64 | 
|  | >>> # Complex Python numbers are interpreted as complex64 | 
|  | >>> torch.tensor([1.2, 3j]).dtype | 
|  | torch.complex64 | 
|  |  | 
|  | >>> torch.set_default_dtype(torch.float64) | 
|  |  | 
|  | >>> # Python floats are now interpreted as float64 | 
|  | >>> torch.tensor([1.2, 3]).dtype    # a new floating point tensor | 
|  | torch.float64 | 
|  | >>> # Complex Python numbers are now interpreted as complex128 | 
|  | >>> torch.tensor([1.2, 3j]).dtype   # a new complex tensor | 
|  | torch.complex128 | 
|  |  | 
|  | """ | 
|  | _C._set_default_dtype(d) | 
|  |  | 
|  | def use_deterministic_algorithms(mode, *, warn_only=False): | 
|  | r""" Sets whether PyTorch operations must use "deterministic" | 
|  | algorithms. That is, algorithms which, given the same input, and when | 
|  | run on the same software and hardware, always produce the same output. | 
|  | When enabled, operations will use deterministic algorithms when available, | 
|  | and if only nondeterministic algorithms are available they will throw a | 
|  | :class:`RuntimeError` when called. | 
|  |  | 
|  | .. note:: This setting alone is not always enough to make an application | 
|  | reproducible. Refer to :ref:`reproducibility` for more information. | 
|  |  | 
|  | .. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative | 
|  | interface for this feature. | 
|  |  | 
|  | The following normally-nondeterministic operations will act | 
|  | deterministically when ``mode=True``: | 
|  |  | 
|  | * :class:`torch.nn.Conv1d` when called on CUDA tensor | 
|  | * :class:`torch.nn.Conv2d` when called on CUDA tensor | 
|  | * :class:`torch.nn.Conv3d` when called on CUDA tensor | 
|  | * :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor | 
|  | * :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor | 
|  | * :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor | 
|  | * :func:`torch.bmm` when called on sparse-dense CUDA tensors | 
|  | * :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor | 
|  | and the index is a list of tensors | 
|  | * :func:`torch.Tensor.index_put` with ``accumulate=False`` | 
|  | * :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU | 
|  | tensor | 
|  | * :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU | 
|  | tensor | 
|  | * :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor | 
|  | * :func:`torch.gather` when called on a CUDA tensor that requires grad | 
|  | * :func:`torch.index_add` when called on CUDA tensor | 
|  | * :func:`torch.index_select` when attempting to differentiate a CUDA tensor | 
|  | * :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor | 
|  | * :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor | 
|  |  | 
|  | The following normally-nondeterministic operations will throw a | 
|  | :class:`RuntimeError` when ``mode=True``: | 
|  |  | 
|  | * :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor | 
|  | * :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor | 
|  | and one of the following modes is used: | 
|  |  | 
|  | - ``linear`` | 
|  | - ``bilinear`` | 
|  | - ``bicubic`` | 
|  | - ``trilinear`` | 
|  |  | 
|  | * :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.NLLLoss` when called on a CUDA tensor | 
|  | * :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor | 
|  | * :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when | 
|  | ``mode='max'`` | 
|  | * :func:`torch.Tensor.put_` when ``accumulate=False`` | 
|  | * :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor | 
|  | * :func:`torch.histc` when called on a CUDA tensor | 
|  | * :func:`torch.bincount` when called on a CUDA tensor | 
|  | * :func:`torch.kthvalue` with called on a CUDA tensor | 
|  | * :func:`torch.median` with indices output when called on a CUDA tensor | 
|  | * :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor | 
|  | * :func:`torch.cumsum` when called on a CUDA tensor when dtype is floating point or complex | 
|  |  | 
|  | A handful of CUDA operations are nondeterministic if the CUDA version is | 
|  | 10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8`` | 
|  | or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more | 
|  | details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_ | 
|  | If one of these environment variable configurations is not set, a :class:`RuntimeError` | 
|  | will be raised from these operations when called with CUDA tensors: | 
|  |  | 
|  | * :func:`torch.mm` | 
|  | * :func:`torch.mv` | 
|  | * :func:`torch.bmm` | 
|  |  | 
|  | Note that deterministic operations tend to have worse performance than | 
|  | nondeterministic operations. | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | This flag does not detect or prevent nondeterministic behavior caused | 
|  | by calling an inplace operation on a tensor with an internal memory | 
|  | overlap or by giving such a tensor as the :attr:`out` argument for an | 
|  | operation. In these cases, multiple writes of different data may target | 
|  | a single memory location, and the order of writes is not guaranteed. | 
|  |  | 
|  | Args: | 
|  | mode (:class:`bool`): If True, makes potentially nondeterministic | 
|  | operations switch to a deterministic algorithm or throw a runtime | 
|  | error. If False, allows nondeterministic operations. | 
|  |  | 
|  | Keyword args: | 
|  | warn_only (:class:`bool`, optional): If True, operations that do not | 
|  | have a deterministic implementation will throw a warning instead of | 
|  | an error. Default: ``False`` | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> torch.use_deterministic_algorithms(True) | 
|  |  | 
|  | # Forward mode nondeterministic error | 
|  | >>> # xdoctest: +SKIP | 
|  | >>> torch.randn(10, device='cuda').kthvalue(0) | 
|  | ... | 
|  | RuntimeError: kthvalue CUDA does not have a deterministic implementation... | 
|  |  | 
|  | # Backward mode nondeterministic error | 
|  | >>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward() | 
|  | ... | 
|  | RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation... | 
|  | """ | 
|  | _C._set_deterministic_algorithms(mode, warn_only=warn_only) | 
|  |  | 
|  | def are_deterministic_algorithms_enabled(): | 
|  | r"""Returns True if the global deterministic flag is turned on. Refer to | 
|  | :func:`torch.use_deterministic_algorithms` documentation for more details. | 
|  | """ | 
|  | return _C._get_deterministic_algorithms() | 
|  |  | 
|  | def is_deterministic_algorithms_warn_only_enabled(): | 
|  | r"""Returns True if the global deterministic flag is set to warn only. | 
|  | Refer to :func:`torch.use_deterministic_algorithms` documentation for more | 
|  | details. | 
|  | """ | 
|  | return _C._get_deterministic_algorithms_warn_only() | 
|  |  | 
|  | def set_deterministic_debug_mode(debug_mode: Union[builtins.int, str]) -> None: | 
|  | r"""Sets the debug mode for deterministic operations. | 
|  |  | 
|  | .. note:: This is an alternative interface for | 
|  | :func:`torch.use_deterministic_algorithms`. Refer to that function's | 
|  | documentation for details about affected operations. | 
|  |  | 
|  | Args: | 
|  | debug_mode(str or int): If "default" or 0, don't error or warn on | 
|  | nondeterministic operations. If "warn" or 1, warn on | 
|  | nondeterministic operations. If "error" or 2, error on | 
|  | nondeterministic operations. | 
|  | """ | 
|  |  | 
|  | # NOTE: builtins.int is used here because int in this scope resolves | 
|  | # to torch.int | 
|  | if not isinstance(debug_mode, (builtins.int, str)): | 
|  | raise TypeError(f'debug_mode must be str or int, but got {type(debug_mode)}') | 
|  |  | 
|  | if isinstance(debug_mode, str): | 
|  | if debug_mode == 'default': | 
|  | debug_mode = 0 | 
|  | elif debug_mode == 'warn': | 
|  | debug_mode = 1 | 
|  | elif debug_mode == 'error': | 
|  | debug_mode = 2 | 
|  | else: | 
|  | raise RuntimeError( | 
|  | 'invalid value of debug_mode, expected one of `default`, ' | 
|  | f'`warn`, `error`, but got {debug_mode}') | 
|  |  | 
|  | if debug_mode == 0: | 
|  | _C._set_deterministic_algorithms(False) | 
|  | elif debug_mode == 1: | 
|  | _C._set_deterministic_algorithms(True, warn_only=True) | 
|  | elif debug_mode == 2: | 
|  | _C._set_deterministic_algorithms(True) | 
|  | else: | 
|  | raise RuntimeError( | 
|  | 'invalid value of debug_mode, expected 0, 1, or 2, ' | 
|  | f'but got {debug_mode}') | 
|  |  | 
|  | def get_deterministic_debug_mode() -> builtins.int: | 
|  | r"""Returns the current value of the debug mode for deterministic | 
|  | operations. Refer to :func:`torch.set_deterministic_debug_mode` | 
|  | documentation for more details. | 
|  | """ | 
|  |  | 
|  | if _C._get_deterministic_algorithms(): | 
|  | if _C._get_deterministic_algorithms_warn_only(): | 
|  | return 1 | 
|  | else: | 
|  | return 2 | 
|  | else: | 
|  | return 0 | 
|  |  | 
|  | def get_float32_matmul_precision() -> builtins.str: | 
|  | r"""Returns the current value of float32 matrix multiplication precision. Refer to | 
|  | :func:`torch.set_float32_matmul_precision` documentation for more details. | 
|  | """ | 
|  | return _C._get_float32_matmul_precision() | 
|  |  | 
|  | def set_float32_matmul_precision(precision): | 
|  | r"""Sets the internal precision of float32 matrix multiplications. | 
|  |  | 
|  | Running float32 matrix multiplications in lower precision may significantly increase | 
|  | performance, and in some programs the loss of precision has a negligible impact. | 
|  |  | 
|  | Supports three settings: | 
|  |  | 
|  | * "highest", float32 matrix multiplications use the float32 datatype for | 
|  | internal computations. | 
|  | * "high", float32 matrix multiplications use the TensorFloat32 or bfloat16_3x | 
|  | datatypes for internal computations, if fast matrix multiplication algorithms | 
|  | using those datatypes internally are available. Otherwise float32 | 
|  | matrix multiplications are computed as if the precision is "highest". | 
|  | * "medium", float32 matrix multiplications use the bfloat16 datatype for | 
|  | internal computations, if a fast matrix multiplication algorithm | 
|  | using that datatype internally is available. Otherwise float32 | 
|  | matrix multiplications are computed as if the precision is "high". | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | This does not change the output dtype of float32 matrix multiplications, | 
|  | it controls how the internal computation of the matrix multiplication is performed. | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | This does not change the precision of convolution operations. Other flags, | 
|  | like `torch.backends.cudnn.allow_tf32`, may control the precision of convolution | 
|  | operations. | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | This flag currently only affects one native device type: CUDA. | 
|  | If "high" or "medium" are set then the TensorFloat32 datatype will be used | 
|  | when computing float32 matrix multiplications, equivalent to setting | 
|  | `torch.backends.cuda.matmul.allow_tf32 = True`. When "highest" (the default) | 
|  | is set then the float32 datatype is used for internal computations, equivalent | 
|  | to setting `torch.backends.cuda.matmul.allow_tf32 = False`. | 
|  |  | 
|  | Args: | 
|  | precision(str): can be set to "highest" (default), "high", or "medium" (see above). | 
|  |  | 
|  | """ | 
|  | _C._set_float32_matmul_precision(precision) | 
|  |  | 
|  | def set_warn_always(b): | 
|  | r"""When this flag is False (default) then some PyTorch warnings may only | 
|  | appear once per process. This helps avoid excessive warning information. | 
|  | Setting it to True causes these warnings to always appear, which may be | 
|  | helpful when debugging. | 
|  |  | 
|  | Args: | 
|  | b (:class:`bool`): If True, force warnings to always be emitted | 
|  | If False, set to the default behaviour | 
|  | """ | 
|  | _C._set_warnAlways(b) | 
|  |  | 
|  | def is_warn_always_enabled(): | 
|  | r"""Returns True if the global warn_always flag is turned on. Refer to | 
|  | :func:`torch.set_warn_always` documentation for more details. | 
|  | """ | 
|  | return _C._get_warnAlways() | 
|  |  | 
|  | ################################################################################ | 
|  | # Define numeric constants | 
|  | ################################################################################ | 
|  |  | 
|  | # For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and | 
|  | # NumPy consistency (https://numpy.org/devdocs/reference/constants.html) | 
|  | from math import e , nan , inf , pi | 
|  | __all__.extend(['e', 'pi', 'nan', 'inf']) | 
|  |  | 
|  | ################################################################################ | 
|  | # Define Storage and Tensor classes | 
|  | ################################################################################ | 
|  |  | 
|  | from ._tensor import Tensor | 
|  | from .storage import _StorageBase, TypedStorage, _LegacyStorage, UntypedStorage | 
|  |  | 
|  | # NOTE: New <type>Storage classes should never be added. When adding a new | 
|  | # dtype, use torch.storage.TypedStorage directly. | 
|  |  | 
|  | class ByteStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.uint8 | 
|  |  | 
|  | class DoubleStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.double | 
|  |  | 
|  | class FloatStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.float | 
|  |  | 
|  | class HalfStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.half | 
|  |  | 
|  | class LongStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.long | 
|  |  | 
|  | class IntStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.int | 
|  |  | 
|  | class ShortStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.short | 
|  |  | 
|  | class CharStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.int8 | 
|  |  | 
|  | class BoolStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.bool | 
|  |  | 
|  | class BFloat16Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.bfloat16 | 
|  |  | 
|  | class ComplexDoubleStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.cdouble | 
|  |  | 
|  | class ComplexFloatStorage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.cfloat | 
|  |  | 
|  | class QUInt8Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.quint8 | 
|  |  | 
|  | class QInt8Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.qint8 | 
|  |  | 
|  | class QInt32Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.qint32 | 
|  |  | 
|  | class QUInt4x2Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.quint4x2 | 
|  |  | 
|  | class QUInt2x4Storage(_LegacyStorage): | 
|  | @classproperty | 
|  | def dtype(self): | 
|  | return torch.quint2x4 | 
|  |  | 
|  | _storage_classes = { | 
|  | UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage, | 
|  | ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage, | 
|  | QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage, | 
|  | ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage, | 
|  | TypedStorage | 
|  | } | 
|  |  | 
|  | # The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings() | 
|  | _tensor_classes: Set[Type] = set() | 
|  |  | 
|  | # If you edit these imports, please update torch/__init__.py.in as well | 
|  | from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed | 
|  | from .serialization import save, load | 
|  | from ._tensor_str import set_printoptions | 
|  |  | 
|  | ################################################################################ | 
|  | # Initialize extension | 
|  | ################################################################################ | 
|  |  | 
|  | def manager_path(): | 
|  | if platform.system() == 'Windows' or sys.executable == 'torch_deploy': | 
|  | return b"" | 
|  | path = get_file_path('torch', 'bin', 'torch_shm_manager') | 
|  | prepare_multiprocessing_environment(get_file_path('torch')) | 
|  | if not os.path.exists(path): | 
|  | raise RuntimeError("Unable to find torch_shm_manager at " + path) | 
|  | return path.encode('utf-8') | 
|  |  | 
|  | from torch.amp import autocast | 
|  |  | 
|  | # Shared memory manager needs to know the exact location of manager executable | 
|  | _C._initExtension(manager_path()) | 
|  | del manager_path | 
|  |  | 
|  | # Appease the type checker: it can't deal with direct setting of globals(). | 
|  | # Note that we will see "too many" functions when reexporting this way; there | 
|  | # is not a good way to fix this problem.  Perhaps, try to redesign VariableFunctions | 
|  | # so that this import is good enough | 
|  | if TYPE_CHECKING: | 
|  | # Some type signatures pulled in from _VariableFunctions here clash with | 
|  | # signatures already imported. For now these clashes are ignored; see | 
|  | # PR #43339 for details. | 
|  | from torch._C._VariableFunctions import *  # type: ignore[misc] # noqa: F403 | 
|  |  | 
|  | # Ops not to be exposed in `torch` namespace, | 
|  | # mostly helper ops. | 
|  | PRIVATE_OPS = ( | 
|  | 'unique_dim', | 
|  | ) | 
|  |  | 
|  | for name in dir(_C._VariableFunctions): | 
|  | if name.startswith('__') or name in PRIVATE_OPS: | 
|  | continue | 
|  | obj = getattr(_C._VariableFunctions, name) | 
|  | obj.__module__ = 'torch' | 
|  | globals()[name] = obj | 
|  | if not name.startswith("_"): | 
|  | __all__.append(name) | 
|  |  | 
|  | ################################################################################ | 
|  | # Import interface functions defined in Python | 
|  | ################################################################################ | 
|  |  | 
|  | # needs to be after the above ATen bindings so we can overwrite from Python side | 
|  | from .functional import *  # noqa: F403 | 
|  |  | 
|  |  | 
|  | ################################################################################ | 
|  | # Remove unnecessary members | 
|  | ################################################################################ | 
|  |  | 
|  | del _StorageBase | 
|  | del _LegacyStorage | 
|  |  | 
|  | ################################################################################ | 
|  | # Define _assert | 
|  | ################################################################################ | 
|  |  | 
|  | # needs to be before the submodule imports to avoid circular dependencies | 
|  | def _assert(condition, message): | 
|  | r"""A wrapper around Python's assert which is symbolically traceable. | 
|  | """ | 
|  | from .overrides import has_torch_function, handle_torch_function | 
|  |  | 
|  | if type(condition) is not torch.Tensor and has_torch_function((condition,)): | 
|  | return handle_torch_function(_assert, (condition,), condition, message) | 
|  | assert condition, message | 
|  |  | 
|  | ################################################################################ | 
|  | # Import most common subpackages | 
|  | ################################################################################ | 
|  |  | 
|  | # Use the redundant form so that type checkers know that these are a part of | 
|  | # the public API. The "regular" import lines are there solely for the runtime | 
|  | # side effect of adding to the imported module's members for other users. | 
|  | from torch import cuda as cuda | 
|  | from torch import cpu as cpu | 
|  | from torch import autograd as autograd | 
|  | from torch.autograd import ( | 
|  | no_grad as no_grad, | 
|  | enable_grad as enable_grad, | 
|  | set_grad_enabled as set_grad_enabled, | 
|  | inference_mode as inference_mode, | 
|  | ) | 
|  | from torch import fft as fft | 
|  | from torch import futures as futures | 
|  | from torch import nested as nested | 
|  | from torch import nn as nn | 
|  | from torch import optim as optim | 
|  | import torch.optim._multi_tensor | 
|  | from torch import multiprocessing as multiprocessing | 
|  | from torch import sparse as sparse | 
|  | from torch import special as special | 
|  | import torch.utils.backcompat | 
|  | from torch import onnx as onnx | 
|  | from torch import jit as jit | 
|  | from torch import linalg as linalg | 
|  | from torch import hub as hub | 
|  | from torch import random as random | 
|  | from torch import distributions as distributions | 
|  | from torch import testing as testing | 
|  | import torch.backends.cuda | 
|  | import torch.backends.mps | 
|  | import torch.backends.cudnn | 
|  | import torch.backends.mkl | 
|  | import torch.backends.mkldnn | 
|  | import torch.backends.openmp | 
|  | import torch.backends.quantized | 
|  | import torch.utils.data | 
|  | from torch import __config__ as __config__ | 
|  | from torch import __future__ as __future__ | 
|  | from torch import profiler as profiler | 
|  |  | 
|  | # Quantized, sparse, AO, etc. should be last to get imported, as nothing | 
|  | # is expected to depend on them. | 
|  | import torch.nn.intrinsic | 
|  | from torch import ao as ao | 
|  | # nn.quant* depends on ao -- so should be after those. | 
|  | import torch.nn.quantizable | 
|  | import torch.nn.quantized | 
|  | import torch.nn.qat | 
|  |  | 
|  | _C._init_names(list(torch._storage_classes)) | 
|  |  | 
|  | # attach docstrings to torch and tensor functions | 
|  | from . import _torch_docs, _tensor_docs, _storage_docs | 
|  | del _torch_docs, _tensor_docs, _storage_docs | 
|  |  | 
|  |  | 
|  | def compiled_with_cxx11_abi(): | 
|  | r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1""" | 
|  | return _C._GLIBCXX_USE_CXX11_ABI | 
|  |  | 
|  |  | 
|  | # Import the ops "namespace" | 
|  | from torch._ops import ops | 
|  | from torch._classes import classes | 
|  |  | 
|  | # Import from torch._decomp import decompositions_for_jvp to register | 
|  | # decompositions for jvp to the jit registry | 
|  | # (decompositions_for_jvp depends on torch.ops, so we place it after) | 
|  | # | 
|  | # FIXME: We specify that __debug__ must be True because | 
|  | # if python is run with -OO or -O flags (i.e., __debug__ is False), we encounter the | 
|  | # following error: | 
|  | # | 
|  | # Return value was annotated as having type Tuple[NoneType, NoneType] but is actually of | 
|  | # type Tuple[Tensor, Tensor]: | 
|  | #   File ".../torch/_decomp/__init__.py", line 1585 | 
|  | #     else: | 
|  | #         buffer = z | 
|  | #     return min - torch.log1p(z), buffer | 
|  | #     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE | 
|  | if os.environ.get("PYTORCH_JIT", "1") == "1" and __debug__ and not torch._C._is_deploy_enabled():  # type: ignore[attr-defined] | 
|  | from torch._decomp import decompositions_for_jvp | 
|  | del decompositions_for_jvp | 
|  |  | 
|  | # quantization depends on torch.fx | 
|  | # Import quantization | 
|  | from torch import quantization as quantization | 
|  |  | 
|  | # Import the quasi random sampler | 
|  | from torch import quasirandom as quasirandom | 
|  |  | 
|  | # If you are seeing this, it means that this call site was not checked if | 
|  | # the memory format could be preserved, and it was switched to old default | 
|  | # behaviour of contiguous | 
|  | legacy_contiguous_format = contiguous_format | 
|  |  | 
|  | # Register fork handler to initialize OpenMP in child processes (see gh-28389) | 
|  | from torch.multiprocessing._atfork import register_after_fork | 
|  | register_after_fork(torch.get_num_threads) | 
|  | del register_after_fork | 
|  |  | 
|  | # Import tools that require fully imported torch (for applying | 
|  | # torch.jit.script as a decorator, for instance): | 
|  | from ._lobpcg import lobpcg as lobpcg | 
|  |  | 
|  | from ._vmap_internals import vmap as vmap | 
|  |  | 
|  | # These were previously defined in native_functions.yaml and appeared on the | 
|  | # `torch` namespace, but we moved them to c10 dispatch to facilitate custom | 
|  | # class usage. We add these lines here to preserve backward compatibility. | 
|  | quantized_lstm = torch.ops.aten.quantized_lstm | 
|  | quantized_gru = torch.ops.aten.quantized_gru | 
|  |  | 
|  | from torch.utils.dlpack import from_dlpack, to_dlpack | 
|  |  | 
|  | # Import experimental masked operations support. See | 
|  | # [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more | 
|  | # information. | 
|  | from . import _masked | 
|  |  | 
|  | # Import removed ops with error message about removal | 
|  | from ._linalg_utils import eig, solve | 
|  |  | 
|  |  | 
|  | def _register_device_module(device_type, module): | 
|  | r"""Register an external runtime module of the specific :attr:`device_type` | 
|  | supported by torch. | 
|  |  | 
|  | After the :attr:`module` is registered correctly, the user can refer | 
|  | the external runtime module as part of torch with attribute torch.xxx. | 
|  | """ | 
|  | # Make sure the device_type represent a supported device type for torch. | 
|  | device_type = torch.device(device_type).type | 
|  | m = sys.modules[__name__] | 
|  | if hasattr(m, device_type): | 
|  | raise RuntimeError("The runtime module of '{}' has already " | 
|  | "been registered with '{}'".format(device_type, getattr(m, device_type))) | 
|  | setattr(m, device_type, module) | 
|  | torch_module_name = '.'.join([__name__, device_type]) | 
|  | sys.modules[torch_module_name] = module | 
|  |  | 
|  | # expose return_types | 
|  | from . import return_types | 
|  | if sys.executable != 'torch_deploy': | 
|  | from . import library | 
|  | if not TYPE_CHECKING: | 
|  | from . import _meta_registrations | 
|  |  | 
|  | # Enable CUDA Sanitizer | 
|  | if 'TORCH_CUDA_SANITIZER' in os.environ: | 
|  | import torch.cuda._sanitizer as csan | 
|  |  | 
|  | csan.enable_cuda_sanitizer() |