| import operator |
| import unittest |
| import contextlib |
| import torch |
| import torch.nn as nn |
| import torch.nn.functional as F |
| from torch.testing import FileCheck |
| |
| # these needs to be set before `common_utils` |
| # infers `GRAPH_EXECUTOR`. |
| # this file **requires** these settings |
| # and setting them after `GRAPH_EXECUTOR` is |
| # inferred erroneously runs or skips |
| # some tests |
| torch._C._jit_set_profiling_executor(True) |
| torch._C._jit_set_profiling_mode(True) |
| |
| from torch.testing._internal.common_utils import run_tests, ProfilingMode, GRAPH_EXECUTOR, \ |
| enable_profiling_mode_for_profiling_tests |
| from torch.testing._internal.jit_utils import JitTestCase, _inline_everything, \ |
| RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, warmup_backward, set_fusion_group_inlining |
| |
| from textwrap import dedent |
| from itertools import product, permutations |
| |
| from test_jit import backward_graph, all_backward_graphs, get_lstm_inputs, get_milstm_inputs, \ |
| LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell |
| |
| from torch.testing._internal.te_utils import CudaCodeGenExecuted |
| |
| from jit.test_fuser_common import TestFuserCommon # noqa: F401 |
| |
| FUSION_GROUP = 'prim::TensorExprGroup' |
| LLVM_ENABLED = torch._C._llvm_enabled() |
| |
| def strip_profiling_nodes(nodes): |
| profiling_opcodes = set(['prim::BailoutTemplate', 'prim::BailOut']) |
| return [n for n in nodes if n.kind() not in profiling_opcodes] |
| |
| def warmup_forward(f, *args, profiling_count=2): |
| for i in range(profiling_count): |
| results = f(*args) |
| |
| return results |
| |
| @contextlib.contextmanager |
| def texpr_reductions_enabled(): |
| old = torch._C._jit_set_texpr_reductions_enabled(True) |
| try: |
| yield |
| finally: |
| torch._C._jit_set_texpr_reductions_enabled(old) |
| |
| class TestTEFuser(JitTestCase): |
| def setUp(self): |
| self.old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu() |
| self.old_must_use_cpu_state = torch._C._jit_get_te_must_use_llvm_cpu() |
| self.old_gpu_fuser_state = torch._C._jit_can_fuse_on_gpu() |
| |
| torch._C._jit_override_can_fuse_on_cpu(True) |
| # TODO: force LLVM. need to add it to asan, mac, windows builds + sandcastle |
| # torch._C._jit_set_te_must_use_llvm_cpu(True) |
| torch._C._jit_override_can_fuse_on_gpu(True) |
| |
| self.old_profiling_executor = torch._C._jit_set_profiling_executor(True) |
| self.old_profiling_mode = torch._C._jit_set_profiling_mode(True) |
| |
| self.old_fusion_inlining = torch._C._debug_get_fusion_group_inlining() |
| torch._C._debug_set_fusion_group_inlining(False) |
| |
| self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled() |
| torch._C._jit_set_texpr_fuser_enabled(True) |
| |
| self.old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu() |
| torch._C._jit_set_te_must_use_llvm_cpu(False) |
| |
| self.devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] |
| self.int_dtypes = [ |
| torch.int8, |
| torch.int16, |
| torch.int32, |
| torch.int64, |
| torch.bool, |
| ] |
| self.fp_dtypes = [ |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| ] |
| self.dtypes = self.int_dtypes + self.fp_dtypes |
| |
| def tearDown(self): |
| torch._C._jit_set_profiling_executor(self.old_profiling_executor) |
| torch._C._jit_set_profiling_mode(self.old_profiling_mode) |
| |
| torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuser_state) |
| torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuser_state) |
| torch._C._jit_set_te_must_use_llvm_cpu(self.old_must_use_cpu_state) |
| torch._C._debug_set_fusion_group_inlining(self.old_fusion_inlining) |
| |
| torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state) |
| torch._C._jit_set_te_must_use_llvm_cpu(self.old_te_must_use_llvm_cpu) |
| |
| def assertLastGraphAllFused(self): |
| self.assertAllFused(torch.jit.last_executed_optimized_graph()) |
| |
| def findFusionGroups(self, graph): |
| result = [] |
| for n in graph.nodes(): |
| if n.kind() == FUSION_GROUP: |
| result.append(n.g('Subgraph')) |
| continue |
| for block in n.blocks(): |
| result += self.findFusionGroups(block) |
| return result |
| |
| def _test_fused_abs(self, device='cpu'): |
| def func(x): |
| return x.abs() * 2 |
| |
| a = torch.randn(5, device=device) |
| scripted = self.checkScript(func, (a,)) |
| self.assertLastGraphAllFused() |
| |
| def test_typecheck(self): |
| a = torch.ones(1) |
| |
| def fused_kernel(a, b): |
| return (a + b) * 2. |
| |
| scripted = self.checkScript(fused_kernel, (a, a)) |
| graph = scripted.graph_for(a, a) |
| # double check we fused |
| fusion_groups = self.findFusionGroups(graph) |
| self.assertEqual(len(fusion_groups), 1) |
| # we use a bigger tensor now (size 2) |
| # if we won't trigger a recompilation |
| # we will still create a tensor up to (size 1) |
| # if the type check fails |
| a = torch.ones(2) |
| # shape changed if we don't trigger recompilation |
| # we would compute the wrong result silently |
| self.assertEqual(scripted(a, a), fused_kernel(a, a)) |
| |
| def test_sum_simple(self): |
| def func(x): |
| x2 = x * x |
| return x2.sum() |
| |
| with texpr_reductions_enabled(): |
| a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu') |
| a = a.reshape(5, 3) |
| scripted = self.checkScript(func, (a,)) |
| self.assertLastGraphAllFused() |
| |
| def test_sum_dim(self): |
| def func(x): |
| return x.sum((0, )) * 2 |
| |
| def func_neg(x): |
| return x.sum((-2, )) * 2 |
| |
| with texpr_reductions_enabled(): |
| a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu') |
| a = a.reshape(5, 3) |
| scripted = self.checkScript(func, (a,)) |
| self.assertLastGraphAllFused() |
| scripted = self.checkScript(func_neg, (a,)) |
| self.assertLastGraphAllFused() |
| |
| def test_sum_keepdim_cast(self): |
| def func(x): |
| return x.sum((0, ), keepdim=True, dtype=torch.double) * 2 |
| |
| with texpr_reductions_enabled(): |
| a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu') |
| a = a.reshape(5, 3) |
| |
| self.checkScript(func, (a,)) |
| self.assertLastGraphAllFused() |
| |
| def test_abs_cpu(self): |
| self._test_fused_abs() |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| def test_abs_cuda(self): |
| self._test_fused_abs(device="cuda") |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| def test_unsqueeze_size_calculation(self): |
| |
| def foo(b, d): |
| x = d.unsqueeze(1) |
| y = x * 42. |
| z = b + y |
| r = z / 42. |
| return r |
| |
| inputs = (torch.rand(20, 28, device='cuda', requires_grad=True), torch.rand(20, device='cuda')) |
| |
| scripted = self.checkScript(foo, inputs) |
| self.assertAllFused(scripted.graph_for(*inputs)) |
| |
| def _test_zero_element_tensors(self, device="cpu"): |
| def decode(sin_t, cos_t): |
| theta = torch.atan2(sin_t.float(), cos_t.float()) |
| return theta |
| |
| sin = torch.zeros(0, device=device) |
| cos = torch.zeros(0, device=device) |
| inputs = [sin, cos] |
| ge = self.checkScript(decode, inputs) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| def test_zero_element_tensors_cuda(self): |
| self._test_zero_element_tensors(device="cuda") |
| |
| def test_zero_element_tensors_cpu(self): |
| self._test_zero_element_tensors(device="cpu") |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_arg_configurations_smoke_cuda(self): |
| # A smoke test to make sure we won't use the same kernel for contiguous |
| # and non-contiguous arguments. |
| # TODO: add optionally enabled debug counters to the fuser to verify |
| # that we really can tell the difference between configurations |
| def f(x, y): |
| z1, z2 = (x + y).chunk(2, dim=1) |
| return z1 * z2 |
| |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| traced_f = torch.jit.trace(f, (x, y,)) |
| self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y)) |
| |
| def test_broadcast(self): |
| for device in self.devices: |
| def scaleshift(x, scale, shift): |
| return x * scale + shift |
| |
| inputs = [ |
| torch.randn(4, 4, dtype=torch.float, device=device), |
| torch.randn(4, dtype=torch.float, device=device), |
| torch.randn(4, dtype=torch.float, device=device), |
| ] |
| self.checkScript(scaleshift, inputs) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(not RUN_CUDA_HALF, "no half support") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on") |
| def test_cuda_half(self): |
| x = torch.randn(4, 4, dtype=torch.half, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.half, device='cuda') |
| |
| funcs = [ |
| self.fn_test_comparison_gt_lt, |
| self.fn_test_relu, |
| self.fn_test_exp |
| ] |
| |
| # Note: Non fused inputs must be float to prevent loss of precision |
| inputs = (x.float(), y.float()) |
| fusion_inputs = (x, y) |
| for fn in funcs: |
| local_inputs = [t.clone().requires_grad_() for t in inputs] |
| local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs] |
| |
| # Verifies outputs |
| fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False) |
| outputs = fn(*local_inputs) |
| fusion_outputs = fusion(*local_fusion_inputs) |
| outputs_half = [t.half() for t in outputs] |
| self.assertEqual(outputs_half, fusion_outputs) |
| |
| # Verifies gradients |
| for output, fusion_output in zip(outputs_half, fusion_outputs): |
| grads = torch.autograd.grad( |
| output.float().sum(), local_inputs, allow_unused=True, retain_graph=True) |
| fusion_grads = torch.autograd.grad( |
| fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True) |
| grads_half = [t.half() for t in grads] |
| self.assertEqual(grads_half, fusion_grads) |
| |
| def test_checks_cat_inputs(self): |
| # single fusion node causes error |
| with set_fusion_group_inlining(True): |
| for device in self.devices: |
| # We shouldn't treat cat nodes as broadcasting. All their inputs |
| # need to be checked for having the same map size, before we can |
| # run the kernel. |
| def f(x, y): |
| return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0) |
| |
| # NOTE: y is broadcastable to x, but output of f(x, y) should have |
| # shape 3x4, and not 4x4. |
| x = torch.randn(2, 4, dtype=torch.float, device=device) |
| y = torch.randn(1, 4, dtype=torch.float, device=device) |
| |
| scripted = self.checkScript(f, (x, y)) |
| self.assertEqual(scripted(x, y).shape, (3, 4)) |
| self.assertAllFused(scripted.graph_for(x, y)) |
| |
| def test_chunk(self): |
| for device in self.devices: |
| def fn(x): |
| a, b, c = x.chunk(3, 1) |
| return a * b + c |
| |
| inputs = [torch.randn(10, 6, dtype=torch.float, device=device)] |
| |
| self.checkScript(fn, inputs) |
| self.assertLastGraphAllFused() |
| |
| @staticmethod |
| def _test_chunk_correctness(self, device='cpu'): |
| def chunk_4_0(x): |
| x0, x1, x2, x3 = x.chunk(4, 0) |
| return x0 + x1 + x2 + x3 |
| |
| def chunk_4_1(x): |
| x0, x1, x2, x3 = x.chunk(4, 1) |
| return x0 + x1 + x2 + x3 |
| |
| def chunk_4_last(x): |
| x0, x1, x2, x3 = x.chunk(4, 2) |
| return x0 + x1 + x2 + x3 |
| |
| fns = [chunk_4_0, chunk_4_1, chunk_4_last] |
| tensors = [ |
| # splitSize = 1 |
| torch.randn(4, 4, 4, dtype=torch.float, device=device), |
| |
| # contiguous case |
| torch.randn(12, 8, 16, dtype=torch.float, device=device), |
| |
| # non-contiguous case |
| torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2), |
| ] |
| |
| for tensor in tensors: |
| for fn in fns: |
| self.checkScript(fn, [tensor]) |
| self.assertLastGraphAllFused() |
| |
| def test_chunk_correctness(self): |
| return self._test_chunk_correctness(self, 'cpu') |
| |
| @unittest.skipIf(not RUN_CUDA, "No CUDA") |
| def test_chunk_correctness_cuda(self): |
| return self._test_chunk_correctness(self, 'cuda') |
| |
| def test_chunk_distributes(self): |
| for device in self.devices: |
| def f(x, y): |
| z1, z2 = (x + y).chunk(2, dim=1) |
| return z1 * z2 |
| |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(f, (x, y)) |
| graph = ge.graph_for(x, y) |
| # XXX: The old fuser does broadcast_tensors but the new fuser doesn't. |
| # FileCheck().check("broadcast_tensors").check('with ' + FUSION_GROUP + '_') \ |
| # .check_count('ConstantChunk', 2, exactly=True).run(str(graph)) |
| FileCheck().check("with " + FUSION_GROUP + "_").check_count( |
| "ConstantChunk", 1, exactly=True |
| ).run(str(graph)) |
| |
| def test_chunk_motion_deduplicates_inputs(self): |
| for device in self.devices: |
| def func1(x): |
| z = x * x |
| z0, z1 = z.chunk(2) |
| return z0 * z1 |
| |
| def func2(x): |
| z = x * x * x |
| z0, z1 = z.chunk(2) |
| return z0 * z1 |
| |
| inputs = [ |
| torch.tensor([1.1, 1.2], device=device, dtype=torch.float), |
| ] |
| for func in [func1, func2]: |
| self.checkScript(func, inputs) |
| self.assertLastGraphAllFused() |
| |
| def test_chunk_multiple(self): |
| for device in self.devices: |
| # The arguments are intentionally used out of order as a test to see |
| # if the fusion compiler adds extra args in the correct order |
| def fn(s, x, y, z): |
| z1, z2 = z.chunk(2, 2) |
| x1, x2, x3 = x.chunk(3, 1) |
| y1, y2 = y.chunk(2, 0) |
| return s + x1 + x2 + x3 + y1 + y2 + z1 + z2 |
| |
| inputs = [ |
| torch.randn(5, 2, 3, dtype=torch.float, device=device), |
| torch.randn(5, 6, 3, dtype=torch.float, device=device), |
| torch.randn(10, 2, 3, dtype=torch.float, device=device), |
| torch.randn(5, 2, 6, dtype=torch.float, device=device), |
| ] |
| |
| ge = self.checkScript(fn, inputs) |
| self.assertAllFused(ge.graph_for(*inputs)) |
| |
| def test_minmax(self): |
| for device in self.devices: |
| def tmax(a, b): |
| return torch.max(2 * a, b) |
| |
| def tmin(a, b): |
| return torch.min(2 * a, b) |
| |
| a = torch.randn(4, 4, dtype=torch.float) |
| b = torch.randn(4, 4, dtype=torch.float) |
| nan = torch.tensor(float('nan'), dtype=torch.float) |
| |
| for f, inputs, device in product( |
| (tmax, tmin), |
| ([a, b], [a, nan], [b, nan]), |
| self.devices): |
| inputs = [t.to(device) for t in inputs] |
| s = self.checkScript(f, inputs) |
| self.assertAllFused(s.graph_for(*inputs)) |
| |
| def test_clamp(self): |
| for device in self.devices: |
| def func2(a, b): |
| return torch.clamp(a + b, min=0, max=2) |
| |
| def funcInf(a, b): |
| return torch.clamp(a + b, min=0, max=float('inf')) |
| |
| def funcNegInf(a, b): |
| return torch.clamp(a + b, min=float('-inf'), max=0) |
| |
| def funcOptMin(a, b): |
| return torch.clamp(a + b, max=2) |
| |
| def funcOptMax(a, b): |
| return torch.clamp(a + b, min=0) |
| |
| a = torch.randn(4, 4, dtype=torch.float, device=device, requires_grad=True) |
| b = torch.randn(4, 4, dtype=torch.float, device=device) |
| nan = torch.tensor(float('nan'), dtype=torch.float, device=device) |
| |
| funcs = (func2, funcInf, funcNegInf, funcOptMin, funcOptMax) |
| for f, inputs in product(funcs, [[a, b], [a, nan]]): |
| inp1, inp2 = inputs |
| s = self.checkScript(f, (inp1, inp2), profiling=ProfilingMode.PROFILING) |
| self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size', 'aten::_size_if_not_equal'}) |
| c = s(inp1, inp2) |
| with enable_profiling_mode_for_profiling_tests(): |
| warmup_backward(c.sum()) |
| graph = backward_graph(s) |
| self.assertAllFused(graph, except_for={'aten::Float', 'aten::_grad_sum_to_size'}) |
| |
| def test_clamp_double(self): |
| for device in self.devices: |
| def clamp_double(x, eta: float): |
| return 1 - x.clamp(eta, 1 - eta) |
| |
| x = torch.tensor([1.0, 1.0], dtype=torch.double, device=device) |
| eta = 1e-9 |
| s = self.checkScript(clamp_double, (x, eta), profiling=ProfilingMode.PROFILING, atol=1e-10, rtol=1e-5) |
| self.assertAllFused(s.graph_for(x, eta)) |
| |
| def test_clamp_int(self): |
| for device in self.devices: |
| def clamp_int(x, eta: int): |
| return x.clamp(0, eta) |
| |
| x = torch.tensor([1, 1], device=device) |
| eta = 1 << 32 |
| s = self.checkScript(clamp_int, (x, eta), profiling=ProfilingMode.PROFILING) |
| self.assertAllFused(s.graph_for(x, eta)) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on") |
| def test_dropout(self): |
| def func(x): |
| x = torch.nn.functional.dropout(x) |
| return torch.nn.functional.relu(x) |
| |
| a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True) |
| s = torch.jit.script(func) |
| c = s(a) |
| c = s(a) |
| warmup_backward(c.sum()) |
| # skip_check to skip extra bailout nodes in between |
| graph = backward_graph(s, skip_check=True) |
| self.assertAllFused(graph, except_for={'aten::div', 'prim::Constant'}) |
| |
| def test_add_bool(self): |
| sizes = [(1,), (2,), (4, 4)] |
| for device, size in product(self.devices, sizes): |
| def f(x, y, z): |
| return x + y + z |
| |
| x = torch.randint(0, 2, size, dtype=torch.bool, device=device) |
| y = torch.randint(0, 2, size, dtype=torch.bool, device=device) |
| z = torch.randint(0, 2, size, dtype=torch.bool, device=device) |
| ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False) |
| self.assertAllFused(ge.graph_for(x, y, z)) |
| |
| def test_mul_bool(self): |
| for device in self.devices: |
| def f(x, y, z): |
| return x * y * z |
| |
| x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device) |
| y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device) |
| z = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device) |
| |
| ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False) |
| self.assertAllFused(ge.graph_for(x, y, z)) |
| |
| def test_div_bool(self): |
| for device in self.devices: |
| def f(x, y, z): |
| return (x + y) / z |
| |
| x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device) |
| y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device=device) |
| z = torch.ones_like(x, dtype=torch.bool, device=device) |
| |
| ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False) |
| self.assertAllFused(ge.graph_for(x, y, z)) |
| |
| def test_bitwise_ops(self): |
| def apply(fn): |
| return lambda x, y, z: fn(fn(x, y), z) |
| |
| binary_ops = [ |
| operator.__and__, |
| operator.__or__, |
| operator.__xor__, |
| operator.__lshift__, |
| operator.__rshift__, |
| ] |
| devices = self.devices |
| for dtype, op, device in product(self.int_dtypes, binary_ops, devices): |
| try: |
| x = self.data_for(dtype, device) |
| y = self.data_for(dtype, device) |
| z = self.data_for(dtype, device) |
| fn = apply(op) |
| ref = fn(x, y, z) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x, y, z)) |
| self.assertEqual(ref, t(x, y, z)) |
| self.assertAllFused(t.graph_for(x, y, z)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| def test_minmax_int_ops(self): |
| def apply(fn): |
| return lambda x, y, z: fn(fn(x, y), z) |
| |
| binary_ops = [ |
| torch.min, |
| torch.max |
| ] |
| devices = self.devices |
| for dtype, op, device in product(self.int_dtypes, binary_ops, devices): |
| try: |
| x = self.data_for(dtype, device) |
| y = self.data_for(dtype, device) |
| z = self.data_for(dtype, device) |
| fn = apply(op) |
| ref = fn(x, y, z) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x, y, z)) |
| self.assertEqual(ref, t(x, y, z)) |
| self.assertAllFused(t.graph_for(x, y, z)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| def test_comparison_eq_ne(self): |
| for device in self.devices: |
| def f(x, y): |
| mask = (x == 0).type_as(x) |
| z = x * mask + y |
| mask = (x != 0).type_as(x) |
| z = z * mask + y |
| return z |
| |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(f, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| @staticmethod |
| def fn_test_comparison_gt_lt(x, y): |
| mask = (x > 0).type_as(x) |
| z = x * mask + y |
| mask = (x < 0).type_as(x) |
| z = z * mask + y |
| return z |
| |
| def test_comparison_gt_lt(self): |
| for device in self.devices: |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| def test_comparison_ge_le(self): |
| for device in self.devices: |
| def f(x, y): |
| mask = (x >= 0).type_as(x) |
| z = x * mask + y |
| mask = (x <= 0).type_as(x) |
| z = z * mask + y |
| return z |
| |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(f, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| x.requires_grad_(True) |
| y.requires_grad_(True) |
| self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes", |
| "aten::_size_if_not_equal")) |
| |
| def test_addcmul(self): |
| for device in self.devices: |
| t = torch.randn(1, 4, dtype=torch.float, device=device) |
| t1 = torch.randn(4, 1, dtype=torch.float, device=device) |
| t2 = torch.randn(1, 4, dtype=torch.float, device=device) |
| |
| def foo(t, t1, t2): |
| return t.addcmul(t + 1, t2, value=0.1) |
| |
| ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True) |
| graph = ge.graph_for(t, t1, t2) |
| fusion_groups = self.findFusionGroups(graph) |
| self.assertEqual(len(fusion_groups), 1) |
| FileCheck().check("aten::add(").check("aten::addcmul(").run(str(fusion_groups[0])) |
| |
| # TODO: We leak CUDA memory here because the traced graph holds onto a |
| # constant-ified tensor. Since the Python-global CompilationUnit is alive |
| # until the end of the process, the memory is effectively leaked. |
| # Removed `_cuda` suffix from this test which disables leak-checking. |
| # If this is a real problem, we'll need to revisit Torchscript Function |
| # lifetimes in Python. |
| def test_lerp(self): |
| for device in self.devices: |
| start = torch.randn(4, 1, dtype=torch.float, device=device) |
| end = torch.randn(1, 4, dtype=torch.float, device=device) |
| weight = torch.tensor(0.5, dtype=torch.float, device=device) |
| |
| # scalar weight overload |
| def foo_weight_scalar(start, end): |
| return torch.lerp(start + 1, end, 0.5) |
| |
| # tensor weight overload |
| def foo_weight_tensor(start, end): |
| return torch.lerp(start + 1, end, weight) |
| |
| ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end)) |
| graph = ge_weight_scalar.graph_for(start, end) |
| self.assertAllFused(graph) |
| |
| # TODO: uncomment when TE enables support for scalar tensors |
| # ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end)) |
| # graph = ge_weight_tensor.graph_for(start, end) |
| # self.assertAllFused(graph) |
| |
| def test_concat(self): |
| # disabling concat causes error with single concat node |
| with set_fusion_group_inlining(True): |
| for device in self.devices: |
| hx = torch.randn(3, 20, dtype=torch.float, device=device) |
| cx = torch.randn(3, 20, dtype=torch.float, device=device) |
| |
| def foo(hx, cx): |
| return torch.cat((hx + cx, hx * cx)) |
| |
| ge = self.checkTrace(foo, (hx, cx)) |
| graph = ge.graph_for(hx, cx) |
| self.assertAllFused(graph) |
| # XXX: TE fuser can handle concats in a fusion group. |
| # FileCheck().check("FusedConcat").check_next("return").run(str(graph)) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_remove_output_used_only_in_size(self): |
| def test_fuse(a, b): |
| c = a + b |
| d = c + b |
| return d |
| |
| scripted_f = torch.jit.script(test_fuse) |
| x = torch.ones(1, requires_grad=True, device='cuda') |
| y = torch.ones(1, requires_grad=True, device='cuda') |
| warmup_forward(scripted_f, x, y, profiling_count=3) |
| g = scripted_f.graph_for(x, y) |
| diff_nodes = g.findAllNodes('prim::DifferentiableGraph') |
| self.assertEqual(len(diff_nodes), 1) |
| g = diff_nodes[0].g('Subgraph') |
| if_nodes = [n for n in g.nodes() if n.kind() == 'prim::If'] |
| self.assertEqual(len(if_nodes), 1) |
| # the if node and the fusion group inside it should only have one output |
| self.assertEqual(len(list(if_nodes[0].outputs())), 1) |
| |
| def test_concat_invariant(self): |
| for device in self.devices: |
| # Invariant: the output of prim::FusedConcat may |
| # not be an input to any node inside the FusionGroup. |
| def fn(x, y, z): |
| x1 = x + y |
| y1 = x - y |
| w = torch.cat([x1, y1]) |
| return w + z |
| |
| x = torch.randn(2, 2, dtype=torch.float, device=device) |
| y = torch.randn(2, 2, dtype=torch.float, device=device) |
| z = torch.randn(4, 2, dtype=torch.float, device=device) |
| ge = self.checkTrace(fn, (x, y, z)) |
| graph = ge.graph_for(x, y, z) |
| self.assertAllFused(graph, except_for={'aten::add'}) |
| # XXX: TE fuser can handle concats inside a fusion group. |
| # FileCheck().check("FusedConcat").check_next("return").run(str(graph)) |
| |
| @staticmethod |
| def fn_test_exp(x, y): |
| return (x + .5 * y).exp() |
| |
| def test_exp(self): |
| for device in self.devices: |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(self.fn_test_exp, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "broken with profiling on") |
| @torch._jit_internal._disable_emit_hooks_decorator |
| @_inline_everything |
| def test_fuse_decompose_normalization(self): |
| class ResLike(torch.jit.ScriptModule): |
| def __init__(self, norm_module): |
| super(ResLike, self).__init__() |
| self.nm = norm_module |
| |
| @torch.jit.script_method |
| def forward(self, x, y): |
| return y + torch.relu(self.nm(x)) |
| |
| def test_norm_decompose(nm, in_opt_graph, not_in_opt_graph, in_fusegraph): |
| model = ResLike(nm).cuda() |
| model_noopt = ResLike(nm).cuda() |
| model_noopt.load_state_dict(model.state_dict()) |
| x = torch.randn(2, 16, 8, 8, device='cuda') |
| y = torch.randn(2, 16, 8, 8, device='cuda') |
| |
| # FIXME: We need differentiation for CNNs for this optimization to trigger |
| with torch.no_grad(): |
| out = model(x, y) |
| graph = model.graph_for(x, y) |
| rep = str(graph) |
| |
| with torch.jit.optimized_execution(False): |
| out_noopt = model_noopt(x, y) |
| rep_noopt = str(model_noopt.graph_for(x, y)) |
| self.assertEqual(out, out_noopt, prec=3e-5) |
| |
| # Check that normalization op has really been decomposed |
| for node_in_graph in in_opt_graph: |
| self.assertIn(node_in_graph, rep) |
| |
| for node_not_in_graph in not_in_opt_graph: |
| self.assertNotIn(node_not_in_graph, rep) |
| self.assertIn(node_not_in_graph, rep_noopt) |
| |
| fusion_groups = [node for node in graph.nodes() if node.kind() == FUSION_GROUP] |
| self.assertEqual(len(fusion_groups), 1) |
| fused_graph = str(fusion_groups[0].g('Subgraph')) |
| for node_in_fusegraph in in_fusegraph: |
| self.assertIn(node_in_fusegraph, fused_graph) |
| |
| # test for batchnorm decompose |
| bm = nn.BatchNorm2d(16) |
| test_norm_decompose(bm, ['aten::batch_norm_update_stats'], |
| ['aten::batch_norm('], ['aten::sqrt']) |
| |
| # test for layernorm decompose |
| lm = nn.LayerNorm(8) |
| test_norm_decompose(lm, ['aten::batch_norm_stats'], |
| ['aten::layer_norm('], ['aten::sub', 'aten::mul', 'aten::add']) |
| |
| def test_threshold(self): |
| for device in self.devices: |
| def f(x): |
| return torch.threshold(x, 0, -10) + x + x + x |
| |
| x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device=device) |
| scripted = self.checkScript(f, (x,)) |
| self.assertAllFused(scripted.graph_for(x)) |
| |
| def test_scalar_arg(self): |
| for device in self.devices: |
| def fn_test_scalar_arg(x: torch.Tensor, p: float) -> torch.Tensor: |
| return p * (x * x + x) |
| |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| p = 3 |
| scripted = self.checkScript(fn_test_scalar_arg, (x, p)) |
| self.assertAllFused(scripted.graph_for(x, p)) |
| |
| x.requires_grad_(True) |
| |
| # use another function otherwise we will bailout |
| # and won't be able to do fused checks |
| def fn_test_scalar_arg_requires_grad(x: torch.Tensor, p: float) -> torch.Tensor: |
| return p * (x * x + x) |
| |
| scripted = torch.jit.script(fn_test_scalar_arg_requires_grad) |
| out = scripted(x, p) |
| out = scripted(x, p) |
| out = scripted(x, p) |
| self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes", |
| "aten::_size_if_not_equal")) |
| |
| @unittest.skip("deduplicating introduces aliasing in backward graph's outputs") |
| def test_fuser_deduplication(self): |
| # See that fusion kernel outputs are deduplicated when removing _grad_sum_to_size in the fuser's compilation |
| # see the discussion in PR #14957. |
| def f(x, y): |
| return torch.sigmoid(x + y) |
| |
| b = torch.randn(5, 5, requires_grad=True) |
| a = torch.randn(5, 5, requires_grad=True) |
| s = self.checkScript(f, (a, b)) |
| self.assertAllFused(s.graph_for(a, b), except_for={ |
| 'aten::size', 'aten::_size_if_not_equal', 'prim::BroadcastSizes'}) |
| |
| c = s(a, b) |
| results = warmup_backward(c.sum(), [a, b]) |
| ga2, gb2 = results.pop() |
| graph = backward_graph(s) |
| self.assertAllFused(graph) |
| # check that a, b share storage, i.e. were generated as a single output in the fuser |
| self.assertEqual(ga2.data_ptr(), gb2.data_ptr()) |
| |
| @unittest.skip("temporarily disabled because fusion was restricted in fixing #22833") |
| def test_fuser_iou(self): |
| # This checks if most of Intersection over Union is fused. |
| # In particular, the backward contains many _grad_sum_to_size. |
| def iou(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2): |
| ltx = torch.max(b1x1, b2x1) # [N,M] |
| lty = torch.max(b1y1, b2y1) |
| rbx = torch.min(b1x2, b2x2) |
| rby = torch.min(b1y2, b2y2) |
| |
| w = (rbx - ltx).clamp(min=0, max=float('inf')) # [N,M] |
| h = (rby - lty).clamp(min=0, max=float('inf')) # [N,M] |
| inter = w * h # [N,M] |
| |
| area1 = (b1x2 - b1x1) * (b1y2 - b1y2) # [N,1] |
| area2 = (b2x2 - b2x1) * (b2y2 - b2y2) # [1,M] |
| iou = inter / (area1 + area2 - inter) |
| return iou |
| |
| box1 = torch.randn(5, 4, requires_grad=True) |
| box2 = torch.randn(5, 4, requires_grad=True) |
| # unsqueezing can currently not be fused |
| b1x1 = box1[:, 0].unsqueeze(1) # [N,1] |
| b1y1 = box1[:, 1].unsqueeze(1) |
| b1x2 = box1[:, 2].unsqueeze(1) |
| b1y2 = box1[:, 3].unsqueeze(1) |
| b2x1 = box2[:, 0].unsqueeze(0) # [1,N] |
| b2y1 = box2[:, 1].unsqueeze(0) |
| b2x2 = box2[:, 2].unsqueeze(0) |
| b2y2 = box2[:, 3].unsqueeze(0) |
| |
| s = self.checkScript(iou, (b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2)) |
| self.assertAllFused(s.graph_for(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2), |
| except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'}) |
| |
| with enable_profiling_mode_for_profiling_tests(True): |
| c = s(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2) |
| warmup_backward(c.sum(), [b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2]) |
| graph = backward_graph(s) |
| self.assertAllFused(graph, except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'}) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") |
| def test_fusion_reuse_multi_gpu(self): |
| def fn(x, y): |
| return x * y * x * y |
| |
| inputs_cpu = [ |
| torch.randn(4, 4, dtype=torch.float), |
| torch.randn(4, 4, dtype=torch.float), |
| ] |
| inputs_cuda0 = [x.cuda(0) for x in inputs_cpu] |
| inputs_cuda1 = [y.cuda(1) for y in inputs_cpu] |
| |
| # Should not crash; these should compile different kernels. |
| ge = self.checkScript(fn, inputs_cpu) |
| self.assertAllFused(ge.graph_for(*inputs_cpu)) |
| ge(*inputs_cuda0) |
| ge(*inputs_cuda1) |
| |
| # TODO: we're currently not checking 'device' in the type info when pulling |
| # nodes into a fusion group. We should fix that and re-enable this test. |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") |
| def test_kernel_cache_multi_gpu(self): |
| def not_fusible(x): |
| return x |
| |
| def fn(x, y, z): |
| x_out = x * x * x * x * x # fusion: lambda x. x * x * x * x * x |
| y_out = y * y * y * y * y |
| z_out = z * z * z * z * z |
| return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out) |
| |
| inputs = [ |
| torch.randn(4, 4, dtype=torch.float), |
| torch.randn(4, 4, dtype=torch.float, device='cuda:0'), |
| torch.randn(4, 4, dtype=torch.float, device='cuda:1'), |
| ] |
| |
| prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs() |
| |
| # There are 3 FusionGroups. Because they have the same graph, they |
| # should reuse the same KernelSpec in the KernelSpec cache. |
| ge = self.checkScript(fn, inputs) |
| self.assertGraphContainsExactly( |
| ge.graph_for(*inputs), FUSION_GROUP, 3, True) |
| new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs() |
| # XXX: This assumes that the same kernel isn't already used by another test |
| # FIXME: Use the TE fuser's way of querying the cache. |
| # self.assertEqual(new_cache_size - prev_cache_size, 1) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") |
| def test_nonzero_device_cuda(self): |
| device = 'cuda:' + str(1) |
| x = torch.tensor([0.4], dtype=torch.float, device=device) |
| y = torch.tensor([0.7], dtype=torch.float, device=device) |
| |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y) + x)) |
| |
| ge = self.checkTrace(doit, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| def test_lstm(self): |
| for device in self.devices: |
| inputs = get_lstm_inputs(device, training=True) |
| module = self.checkScript(LSTMCellS, inputs) |
| self.assertAllFused(module.graph_for(inputs)) |
| |
| def test_lstm_concat(self): |
| # single fusion node causes error |
| with set_fusion_group_inlining(True): |
| for device in self.devices: |
| inputs = get_lstm_inputs(device) |
| ge = self.checkTrace(LSTMCellC, inputs) |
| graph = ge.graph_for(*inputs) |
| self.assertLastGraphAllFused() |
| # XXX: TE fuser can handle concats inside a fusion group. |
| # FileCheck().check("FusedConcat").check_next("return").run(str(graph)) |
| |
| def test_lstm_gates_permutations(self): |
| for device in self.devices: |
| # lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh. |
| # Test that any permutation of this will still result in one FusionGroup. |
| choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh'] |
| template = dedent(''' |
| def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh): |
| gates = {} + {} + {} + {} |
| ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) |
| return ingate * forgetgate * cellgate * outgate |
| ''') |
| for permutation in permutations(choices, len(choices)): |
| code = template.format(*permutation) |
| scope = {} |
| exec(code, globals(), scope) |
| cu = torch.jit.CompilationUnit(code) |
| |
| inputs = get_lstm_inputs(device, training=False) |
| self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs)) |
| forward_graph = cu.cell.graph_for(*inputs) |
| self.assertGraphContainsExactly(forward_graph, FUSION_GROUP, 1) |
| |
| # TODO: Fuser doesn't work at all when inputs require grad. Fix that |
| def test_lstm_traced(self): |
| for device in self.devices: |
| inputs = get_lstm_inputs(device) |
| ge = self.checkTrace(LSTMCellF, inputs) |
| graph = ge.graph_for(*inputs) |
| fusion_groups = self.findFusionGroups(graph) |
| self.assertEqual(len(fusion_groups), 1) |
| FileCheck().check("Chunk").check("aten::sigmoid").check("aten::tanh").run(str(fusion_groups[0])) |
| |
| def test_milstm(self): |
| for device in self.devices: |
| inputs = get_milstm_inputs(device, training=True) |
| module = self.checkScript(MiLSTMCell, inputs) |
| forward_graph = module.graph_for(*inputs) |
| self.assertGraphContainsExactly( |
| forward_graph, FUSION_GROUP, 1, consider_subgraphs=True) |
| FileCheck().check("DifferentiableGraph").check("TupleConstruct") \ |
| .check_next("return").check(FUSION_GROUP).run(str(forward_graph)) |
| hy, cy = module(*inputs) |
| warmup_backward((hy + cy).sum()) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skip("rand_like is not supported yet") |
| def test_rand_cuda(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['d'] |
| |
| def __init__(self): |
| super(M, self).__init__() |
| self.d = torch.device('cuda') |
| |
| @torch.jit.script_method |
| def create(self, x): |
| return x * x + x + torch.rand_like(x) |
| |
| x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda') |
| m = M() |
| out1 = m.create(x) |
| cx = CudaCodeGenExecuted() |
| out2 = m.create(x) |
| assert cx.elapsed_value() == 1 |
| self.assertNotEqual(out1, out2) |
| self.assertTrue(torch.all(out1 >= 0)) |
| self.assertTrue(torch.all(out1 < 1)) |
| self.assertTrue(torch.all(out2 >= 0)) |
| self.assertTrue(torch.all(out2 < 1)) |
| self.assertAllFused(m.create.graph_for(x)) |
| |
| @staticmethod |
| def fn_test_relu(x, y): |
| return F.relu(x + .5 * y) |
| |
| def test_relu(self): |
| for device in self.devices: |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(self.fn_test_relu, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| def test_erf(self): |
| for device in self.devices: |
| def fn_test_erf(x): |
| return F.relu(torch.erf(x) - torch.erfc(x)) |
| |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| ge = self.checkScript(fn_test_erf, (x,), profiling=ProfilingMode.PROFILING) |
| self.assertAllFused(ge.graph_for(x)) |
| x.requires_grad_(True) |
| ge = self.checkScript(fn_test_erf, (x,), profiling=ProfilingMode.PROFILING) |
| self.assertAllFused(ge.graph_for(x), except_for=("aten::size", "prim::BroadcastSizes", |
| "aten::_size_if_not_equal")) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skip("rand_like is not supported yet") |
| def test_rand_broadcast_cuda(self): |
| def fn_test_rand(x, y): |
| r = torch.rand_like(y) |
| return r * x + x |
| |
| # If using profiling, a different function is needed to test different |
| # shapes, or we'll use a cached script. |
| def fn_test_rand2(x, y): |
| r = torch.rand_like(y) |
| return r * x * x |
| |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| script_f = torch.jit.script(fn_test_rand) |
| warmup_forward(script_f, x, y) |
| out = script_f(x, y) |
| self.assertAllFused(script_f.graph_for(x, y)) |
| x.requires_grad_(True) |
| out = script_f(x, y) |
| self.assertAllFused(script_f.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes", |
| "aten::_size_if_not_equal")) |
| |
| # test that broadcasting random produces correct results |
| x = torch.ones(4, 4, dtype=torch.float, device='cuda') |
| y = torch.ones(4, dtype=torch.float, device='cuda') |
| script_f = torch.jit.script(fn_test_rand2) |
| warmup_forward(script_f, x, y) |
| out = script_f(x, y) |
| # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 |
| self.assertEqualIgnoreType(out[0, :] + torch.zeros(4, 4, device='cuda'), out) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skip("rand_like is not supported yet") |
| def test_rand_diamond(self): |
| def fn_test_diamond(x, y): |
| r = torch.rand_like(y) |
| a = x + r |
| b = y - r |
| return a + b |
| |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| script_f = torch.jit.script(fn_test_diamond) |
| warmup_forward(script_f, x, y) |
| cx = CudaCodeGenExecuted() |
| out = script_f(x, y) |
| assert cx.elapsed_value() == 1 |
| self.assertEqual(out, x + y) |
| |
| @unittest.skip("Reenable when TE will add support for 0-dim tensors") |
| def test_scalar(self): |
| def fn(x, y): |
| return 2 * x + y |
| |
| x = torch.tensor(0.1, dtype=torch.float, device='cpu') |
| y = torch.tensor(1, dtype=torch.float, device='cpu') |
| ge = self.checkScript(fn, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| def test_small_constant(self): |
| for device in self.devices: |
| def fn_test_small_constant(x, y): |
| return (1e-8 * x + 5e-9 * y) * 1e8 |
| x = torch.randn(4, 4, dtype=torch.float, device=device) |
| y = torch.randn(4, 4, dtype=torch.float, device=device) |
| |
| ge = self.checkTrace(fn_test_small_constant, (x, y)) |
| self.assertAllFused(ge.graph_for(x, y)) |
| |
| # Currently we don't pull constants into fusion groups, because in some |
| # cases it could remove the constant from the original graph and now our |
| # fusion group needs to return that constant for its other users. |
| # Instead of never pulling constants into the fusion group, we should just |
| # be more careful at how we rewrite its users. |
| # TODO: fix that and reenable the test. |
| def test_tensor_scalar_ops(self): |
| for device in self.devices: |
| def should_fuse(x): |
| z = 3. |
| y = x + z |
| return x * y |
| |
| def should_fuse_scalar(x, z): |
| y = x + int(z) |
| return x * y |
| |
| inputs = [torch.randn(2, 2, dtype=torch.float, device=device)] |
| ge = self.checkScript(should_fuse, inputs) |
| graph = ge.graph_for(*inputs) |
| fusion_groups = self.findFusionGroups(graph) |
| self.assertEqual(len(fusion_groups), 1) |
| FileCheck().check("aten::add").check("aten::mul").run(str(fusion_groups[0])) |
| |
| inputs = [ |
| torch.randn(2, 2, dtype=torch.float, device=device), |
| torch.tensor(3., dtype=torch.float, device=device), |
| ] |
| ge = self.checkScript(should_fuse_scalar, inputs) |
| # Check that the fused graph computes correct results when the scalar |
| # input changes. |
| inputs = [ |
| torch.randn(2, 2, dtype=torch.float, device=device), |
| torch.tensor(7., dtype=torch.float, device=device), |
| ] |
| self.assertEqual(ge(*inputs), should_fuse_scalar(*inputs)) |
| # The TE fuser supports fusion of non-constant scalars |
| self.assertGraphContainsExactly( |
| ge.graph_for(*inputs), FUSION_GROUP, 1, consider_subgraphs=True) |
| |
| def test_where_and_typing(self): |
| for device in self.devices: |
| def f(x, y): |
| mask = x > y |
| res = torch.where(mask, x, y) |
| return mask, res |
| |
| x = torch.randn(4, 4, dtype=torch.double, device=device) |
| y = torch.randn(4, 4, dtype=torch.double, device=device) |
| |
| script_f = self.checkScript(f, (x, y)) |
| self.assertAllFused(script_f.graph_for(x, y), except_for={'prim::TupleConstruct'}) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on") |
| def test_grad_sum_to_size_elimination(self): |
| |
| def my_broadcasted_cell(a, b, c): |
| return (a + b) + c |
| |
| s1 = torch.randn(5, 1, requires_grad=True, device='cuda') |
| s2 = torch.randn(5, 5, requires_grad=True, device='cuda') |
| |
| module = self.checkScript(my_broadcasted_cell, (s1, s1, s1), profiling=ProfilingMode.PROFILING) |
| forward_graph = module.graph_for(s1, s1, s1) |
| self.assertAllFused(forward_graph, except_for=("aten::size", "prim::BroadcastSizes", |
| "aten::_size_if_not_equal")) |
| |
| old_plans = set() |
| for i in range(3): |
| # if we have s2, then the s1 are _grad_sum_to_size'd |
| |
| args = s2 if i < 1 else s1, s2 if i < 2 else s1, s2 |
| args = [a.detach_().requires_grad_() for a in args] |
| # recompile, so we don't trigger bailouts |
| module = self.checkScript(my_broadcasted_cell, args, profiling=ProfilingMode.PROFILING) |
| res = module(s2 if i < 1 else s1, s2 if i < 2 else s1, s2) |
| warmup_backward(res.sum(), args) |
| grads = torch.autograd.grad(res.sum(), args) |
| for inp, gr in zip(args, grads): |
| self.assertEqual(inp.shape, gr.shape) |
| backward = None |
| # this is a workaround for the backward graphs not being |
| # in order for Python 2 |
| for g in all_backward_graphs(module): |
| if str(g) not in old_plans: |
| assert backward is None |
| backward = g |
| old_plans.add(str(backward)) |
| num_grads = 1 if i > 0 else 0 |
| self.assertEqual(len([n for n in backward.nodes() if n.kind() == 'aten::_grad_sum_to_size']), num_grads) |
| |
| def test_disabled(self): |
| old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu() |
| torch._C._jit_override_can_fuse_on_cpu(False) |
| |
| def fn(a): |
| return a ** 2 + a |
| |
| x = torch.randn(4, dtype=torch.float, device="cpu") |
| s = self.checkScript(fn, (x,)) |
| g = s.graph_for(x) |
| self.assertEqual(len(self.findFusionGroups(g)), 0) |
| |
| torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuser_state) |
| |
| def data_for(self, dtype, device="cuda", size=None): |
| if size is None: |
| v = torch.arange(1, 3, dtype=torch.float, device=device) |
| else: |
| v = torch.rand(*size, device=device) |
| if dtype == torch.bool: |
| return v > 2 |
| elif dtype in [torch.qint8, torch.quint8, torch.qint32]: |
| return torch.quantize_per_tensor(v, 0.1, 1, dtype=dtype) |
| else: |
| return v.to(dtype) |
| |
| def test_torch_to(self): |
| # test no op |
| @torch.jit.script |
| def foo(x): |
| return x.to(torch.float) |
| |
| foo(torch.tensor([3.], dtype=torch.float)) |
| foo(torch.tensor([3.], dtype=torch.float)) |
| FileCheck().check_not("TensorExpr").run(torch.jit.last_executed_optimized_graph()) |
| |
| # test not fusing non-const inputs |
| @torch.jit.script |
| def foo(x, dtype: int): |
| return x.to(dtype) |
| |
| foo(torch.tensor([3.], dtype=torch.float), torch.int) |
| foo(torch.tensor([3.], dtype=torch.float), torch.int) |
| FileCheck().check_not("TensorExpr").run(torch.jit.last_executed_optimized_graph()) |
| |
| # test not fusing to_pinned inputs |
| @torch.jit.script |
| def foo(x, dtype: int): |
| return x.to(pin_memory=True) |
| |
| foo(torch.tensor([3.], dtype=torch.float), torch.int) |
| foo(torch.tensor([3.], dtype=torch.float), torch.int) |
| FileCheck().check_not("TensorExpr").run(torch.jit.last_executed_optimized_graph()) |
| |
| |
| # test across-device not supported |
| if torch.cuda.is_available(): |
| @torch.jit.script |
| def foo(x): |
| return x.to(device="cuda") |
| |
| foo(torch.tensor([3.], dtype=torch.float)) |
| foo(torch.tensor([3.], dtype=torch.float)) |
| FileCheck().check_not("TensorExpr").run(torch.jit.last_executed_optimized_graph()) |
| |
| sizes = [(1, 4), (4, 4)] |
| # reuses cast impl, smaller dtype set for faster test |
| dtypes = [ |
| torch.bool, |
| torch.int, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| ] |
| |
| class MyMod(torch.nn.Module): |
| def __init__(self, dtype): |
| super(MyMod, self).__init__() |
| self.dtype = dtype |
| |
| def forward(self, x): |
| return x.to(self.dtype) |
| |
| bad_dtypes = [] |
| for dtype, output_dtype, device, size in product(dtypes, dtypes, self.devices, sizes): |
| if dtype == output_dtype: |
| continue |
| |
| x = self.data_for(dtype, device, size=size) |
| mod = MyMod(output_dtype) |
| ref = mod.forward(x) |
| # use freezing to make non-Tensor args to `to` constant |
| mod = torch.jit.freeze(torch.jit.script(mod.eval())) |
| warmup_forward(mod.forward, x) |
| self.assertEqual(ref, mod.forward(x)) |
| self.assertLastGraphAllFused() |
| |
| @unittest.skip("Temporarily disabled") |
| def test_masked_fill(self): |
| dtypes = [ |
| torch.int8, |
| torch.int16, |
| torch.int32, |
| torch.int64, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| torch.bool, |
| ] |
| sizes = [(2,), (4, 4)] |
| for self_dtype, device, scalar_val, size in product(dtypes, self.devices, [0.4, 3], sizes): |
| input_v = self.data_for(self_dtype, device, size=size) |
| mask = self.data_for(torch.bool, device, size=size) |
| |
| def fn(input_v, mask): |
| return torch.masked_fill(input_v, mask, scalar_val) |
| ref = fn(input_v, mask) |
| try: |
| t = torch.jit.trace(fn, (input_v, mask)) |
| torch.testing.assert_allclose(ref, t(input_v, mask)) |
| print(torch.jit.last_executed_optimized_graph()) |
| self.assertLastGraphAllFused() |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(self_dtype), op.__name__, device, str(size)]) |
| ) |
| |
| def test_isnan(self): |
| x = torch.rand([4]) |
| x[0] = float('nan') |
| inputs = [ |
| x, |
| torch.tensor([float('nan'), .5]) |
| ] |
| dtypes = [ |
| torch.int8, |
| torch.int16, |
| torch.int32, |
| torch.int64, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| torch.bool, |
| ] |
| |
| for inp, device, dtype in product(inputs, self.devices, dtypes): |
| # TODO |
| if dtype == torch.float16 and not LLVM_ENABLED: |
| continue |
| |
| inp = inp.to(device=device, dtype=dtype) |
| try: |
| f = torch.jit.trace(lambda x: x.isnan(), (inp,)) |
| warmup_forward(f, inp) |
| self.assertEqual(f(inp), inp.isnan()) |
| self.assertLastGraphAllFused() |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), 'isnan', device]) |
| ) |
| |
| # @unittest.skipIf(not LLVM_ENABLED, "TODO: bugs in ir eval") |
| def test_unary_ops(self): |
| def apply(fn): |
| return lambda x: fn(x) |
| |
| unary_ops = [ |
| torch.lgamma, |
| torch.sigmoid, |
| torch.reciprocal, |
| torch.neg, |
| torch.relu, |
| torch.log, |
| torch.log10, |
| torch.log1p, |
| torch.log2, |
| torch.exp, |
| torch.expm1, |
| torch.erf, |
| torch.erfc, |
| torch.cos, |
| torch.sin, |
| torch.tan, |
| torch.acos, |
| torch.asin, |
| torch.cosh, |
| torch.sinh, |
| torch.atan, |
| torch.tanh, |
| F.hardtanh, |
| torch.sqrt, |
| torch.rsqrt, |
| torch.abs, |
| torch.ceil, |
| torch.floor, |
| torch.round, |
| torch.trunc, |
| torch.frac, |
| lambda x: torch.threshold(x, 0, -10), |
| lambda x: torch.clamp(x, -10, 10), |
| ] |
| sizes = [(1,), (2,), (4, 4)] |
| for dtype, op, device, size in product(self.dtypes, unary_ops, self.devices, sizes): |
| try: |
| x = self.data_for(dtype, device, size=size) |
| fn = apply(op) |
| ref = fn(x) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x,)) |
| torch.testing.assert_allclose(ref, t(x)) |
| self.assertAllFused(t.graph_for(x)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device, str(size)]) |
| ) |
| |
| def test_binary_ops(self): |
| def apply(fn): |
| return lambda x, y: fn(x, y) |
| |
| binary_ops = [ |
| operator.__and__, |
| operator.__or__, |
| operator.__xor__, |
| torch.add, |
| torch.sub, |
| torch.mul, |
| torch.min, |
| torch.max, |
| lambda x, y: torch.lerp(x, y, 0.5), |
| torch.atan2, |
| torch.div, |
| torch.eq, |
| torch.ne, |
| torch.ge, |
| torch.gt, |
| torch.lt, |
| torch.fmod, |
| torch.remainder, |
| lambda x, y: y.type_as(x), |
| ] |
| fp_only = [ |
| torch.fmod, |
| torch.remainder, |
| ] |
| devices = self.devices |
| for dtype, op, device in product(self.dtypes, binary_ops, devices): |
| try: |
| x = self.data_for(dtype, device) |
| y = self.data_for(dtype, device) |
| fn = apply(op) |
| ref = fn(x, y) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x, y)) |
| self.assertEqual(ref, t(x, y)) |
| if op not in fp_only or dtype.is_floating_point: |
| self.assertAllFused(t.graph_for(x, y)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| @unittest.skipIf(not LLVM_ENABLED, "TODO: bugs in ir eval") |
| def test_binary_tensor_scalar_ops(self): |
| def apply_with_scalar(fn, scalar): |
| return lambda x: fn(x, scalar) |
| |
| # FIXME: Fails in IR Eval: torch.int64 and_ cpu |
| binary_ops = [ |
| operator.__and__, |
| operator.__or__, |
| operator.__xor__, |
| torch.add, |
| torch.sub, |
| torch.mul, |
| torch.eq, |
| torch.ne, |
| torch.ge, |
| torch.lt, |
| torch.gt, |
| ] |
| devices = self.devices |
| # Maybe we should split this into separate tests to speed it up by |
| # only using scalar values relevant to particular ops |
| scalars = [1.5, 3, 0, -2.0, -1] |
| for dtype, op, device, scalar in product(self.dtypes, binary_ops, devices, scalars): |
| try: |
| x = self.data_for(dtype, device) |
| fn = apply_with_scalar(op, scalar) |
| ref = fn(x) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x)) |
| self.assertEqual(ref, t(x)) |
| self.assertAllFused(t.graph_for(x)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| def test_binary_div_ops(self): |
| def apply_with_scalar(fn, scalar): |
| return lambda x: fn(x, scalar) |
| |
| binary_ops = [ |
| torch.div, |
| torch.remainder, |
| torch.fmod, |
| ] |
| devices = self.devices |
| # Maybe we should split this into separate tests to speed it up by |
| # only using scalar values relevant to particular ops |
| scalars = [1.5, 3, -2.0, -1] # skip 0 |
| for dtype, op, device, scalar in product(self.dtypes, binary_ops, devices, scalars): |
| try: |
| x = self.data_for(dtype, device) |
| fn = apply_with_scalar(op, scalar) |
| ref = fn(x) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x)) |
| self.assertEqual(ref, t(x)) |
| except Exception as e: |
| raise RuntimeError( |
| "Failed: {} {} {} {}".format(dtype, op.__name__, device, scalar) |
| ) |
| |
| def test_binary_cuda_only_ops(self): |
| def apply_with_scalar(fn, scalar): |
| return lambda x: fn(x, scalar) |
| |
| dtypes = [ |
| torch.int8, |
| torch.int16, |
| torch.int32, |
| torch.int64, |
| # FIXME: 'pow' fails with dtype=torch.float16/device=cuda/scalar=0 |
| # torch.float16, |
| torch.float32, |
| torch.float64, |
| # torch.bool intentionally not included |
| ] |
| binary_ops = [ |
| torch.pow, |
| ] |
| devices = ['cuda'] if torch.cuda.is_available() else [] |
| # Maybe we should split this into separate tests to speed it up by |
| # only using scalar values relevant to particular ops |
| scalars = [1.5, 3, 0, -2.0, -1] |
| for dtype, op, device, scalar in product(dtypes, binary_ops, devices, scalars): |
| try: |
| x = self.data_for(dtype, device) |
| fn = apply_with_scalar(op, scalar) |
| ref = fn(x) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x)) |
| self.assertEqual(ref, t(x)) |
| self.assertAllFused(t.graph_for(x)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| @unittest.skipIf(not LLVM_ENABLED, "TODO: enable in ir eval") |
| def test_ternary_ops(self): |
| def apply(fn): |
| return lambda x, y, z: fn(x, y, z) |
| |
| ternary_ops = [ |
| torch.lerp, |
| torch.addcmul, |
| ] |
| devices = self.devices |
| for dtype, op, device in product(self.dtypes, ternary_ops, devices): |
| try: |
| x = self.data_for(dtype, device) |
| y = self.data_for(dtype, device) |
| z = self.data_for(dtype, device) |
| fn = apply(op) |
| ref = fn(x, y, z) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x, y, z)) |
| self.assertEqual(ref, t(x, y, z)) |
| self.assertAllFused(t.graph_for(x, y, z)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| @unittest.skip("FIXME: fuser doesn't include ListConstruct nodes to the group causing a failure") |
| def test_list_ops(self): |
| def apply(fn): |
| return lambda x, y, z: fn([x * x, y * y, z * z]) |
| |
| devices = self.devices |
| list_ops = [ |
| torch.cat, |
| ] |
| for dtype, op, device in product(self.dtypes, list_ops, devices): |
| try: |
| x = self.data_for(dtype, device, size=[5, 4, 1, 7]) |
| y = self.data_for(dtype, device, size=[5, 4, 1, 7]) |
| z = self.data_for(dtype, device, size=[5, 4, 1, 7]) |
| fn = apply(op) |
| ref = fn(x, y, z) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (x, y, z)) |
| self.assertEqual(ref, t(x, y, z)) |
| self.assertAllFused(t.graph_for(x, y, z)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| def test_where_ops(self): |
| def apply(fn): |
| return lambda cond, x, y: fn(cond, x, y) |
| |
| ops = [ |
| torch.where, |
| lambda cond, x, y: torch.where(cond, x, 3.1415), |
| lambda cond, x, y: torch.where(cond, 42, y), |
| ] |
| devices = self.devices |
| for dtype, op, device in product(self.dtypes, ops, devices): |
| try: |
| cond = self.data_for(torch.bool, device) |
| x = self.data_for(dtype, device) |
| y = self.data_for(dtype, device) |
| fn = apply(op) |
| ref = fn(cond, x, y) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| try: |
| t = torch.jit.trace(fn, (cond, x, y)) |
| self.assertEqual(ref, t(cond, x, y)) |
| self.assertAllFused(t.graph_for(cond, x, y)) |
| except Exception as e: |
| raise RuntimeError( |
| " ".join(["Failed:", str(dtype), op.__name__, device]) |
| ) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_unsupported_dtypes(self): |
| def fn(x): |
| return x * x + x |
| |
| unsupported_dtypes = [ |
| torch.uint8, |
| torch.bfloat16, |
| torch.complex32, |
| torch.complex64, |
| torch.complex128, |
| torch.qint8, |
| torch.quint8, |
| torch.qint32, |
| ] |
| for dtype in unsupported_dtypes: |
| try: |
| x = self.data_for(dtype, "cuda") |
| ref = fn(x) |
| except Exception: |
| # If eager mode doesn't support a dtype/op/device combo, |
| # neither does the fuser. Catch everything to avoid needing to |
| # guess what errors might be thrown by eager. |
| continue |
| t = torch.jit.trace(fn, (x,)) |
| self.assertEqual(ref, t(x)) |
| self.assertEqual(len(self.findFusionGroups(t.graph_for(x))), 0) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_superslomo(self): |
| # Test extracted from Super-SloMo: https://github.com/avinashpaliwal/Super-SloMo |
| # A few interesting things happen here: strided inputs of mixed size, |
| # plus outputs of mixed shapes. The latter characteristic happened to |
| # expose a memory corruption bug due to not properly guarding the |
| # outputs. |
| def eager(t0, t1, t2, t3, t4): |
| t5 = torch.mul(t0, t4) |
| t6 = torch.mul(t2, t3) |
| t7 = torch.mul(t6, t1) |
| t9 = torch.add(t5, t7) |
| t11 = torch.add(t0, t6) |
| ft_p = torch.div(t9, t11) |
| return (ft_p, t11, t9, t6) |
| |
| t0 = torch.rand(1, 6, 352, 352, device="cuda").transpose(0, 1) |
| t1 = torch.rand(6, 3, 352, 352, device="cuda") |
| t2 = torch.rand(6, device="cuda")[None, None, None, :].permute(3, 0, 1, 2) |
| t3 = torch.rand(6, 1, 352, 352, device="cuda") |
| t4 = torch.rand(6, 3, 352, 352, device="cuda") |
| inputs = [t0, t1, t2, t3, t4] |
| |
| script = torch.jit.script(eager) |
| for _ in range(4): |
| for pair in zip(script(*inputs), eager(*inputs)): |
| test, ref = pair |
| torch.testing.assert_allclose(test, ref) |
| self.assertAllFused(script.graph_for(*inputs)) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_sub_gt_and(self): |
| def eager(t1, t2, t3, t4, t: float): |
| w = t1 - t2 |
| h = t3 - t4 |
| k = (w > t) & (h > t) |
| assert k.dtype == torch.bool |
| if t > 0.5: |
| # Putting a use of k in a never-executed conditional prevents |
| # profiling its type, which leaves it as "Tensor". If we |
| # propagate Tensor back to the definition of k, we have to be |
| # careful not to create a fusion group containing it. |
| return k + 1 |
| return w |
| t = torch.rand(8, dtype=torch.float, device='cuda') |
| scripted = self.checkScript(eager, (t, t, t, t, 0.1)) |
| |
| def test_chunk_mul_one(self): |
| for device in self.devices: |
| def eager(x): |
| z, y, w = torch.chunk(x, 3, -1) |
| return z * 3, y, w |
| x = torch.rand(64, 1, 3072, dtype=torch.float, device=device) |
| z, y, w = eager(x) |
| script = self.checkScript(eager, (x,)) |
| |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_eq_unsqueeze_type_as(self): |
| def eager(a, b): |
| mask = b == 1 |
| mask = torch.unsqueeze(mask, -1) |
| x = mask.type_as(a) |
| return x, mask |
| a = torch.rand(1, 64, 1024, device='cuda', dtype=torch.float) |
| b = torch.randint(-2, 2, (1, 64), device='cuda', dtype=torch.long) |
| script = self.checkScript(eager, (a, b)) |
| |
| def test_neg_pow(self): |
| def eager_tt(a: torch.Tensor, b: torch.Tensor): |
| return torch.neg(torch.pow(a, b)) |
| |
| def eager_ts(a: torch.Tensor, b: float): |
| return torch.neg(torch.pow(a, b)) |
| |
| def eager_st(a: float, b: torch.Tensor): |
| return torch.neg(torch.pow(a, b)) |
| |
| a = torch.rand(1, dtype=torch.float) |
| b = torch.rand(1, dtype=torch.float) |
| s = b.item() |
| script = self.checkScript(eager_tt, (a, b)) |
| self.assertAllFused(script.graph_for(a, b)) |
| script = self.checkScript(eager_ts, (a, s)) |
| self.assertAllFused(script.graph_for(a, s)) |
| script = self.checkScript(eager_st, (s, b)) |
| self.assertAllFused(script.graph_for(s, b)) |
| |
| if __name__ == '__main__': |
| run_tests() |