blob: 0bd83063a569a0ed7897d194118b42a91de12e94 [file] [log] [blame]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils._pytree import tree_map
from torch.utils._python_dispatch import enable_python_mode
from typing import Iterator, List
import logging
import contextlib
import itertools
# TODO: move this into library proper
@contextlib.contextmanager
def no_dispatch() -> Iterator[None]:
guard = torch._C._DisableTorchDispatch()
try:
yield
finally:
del guard
# How the chain of calls works for LoggingTensor:
# 1. Call torch.sin
# 2. Attempt __torch_function__. In LoggingTensor torch function is disabled so we bypass it entirely
# 3. Enter dispatcher, wind your way through Autograd
# 4. Hit Python dispatch key, call __torch_dispatch__
# TODO: TensorBase should work
class LoggingTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# The wrapping tensor (LoggingTensor) shouldn't hold any
# memory for the class in question, but it should still
# advertise the same device as before
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
# TODO: clone strides and storage aliasing
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad
)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
def __repr__(self):
return f"LoggingTensor({self.elem})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, LoggingTensor) else e
def wrap(e):
return LoggingTensor(e) if isinstance(e, torch.Tensor) else e
# no_dispatch is only needed if you use enable_python_mode.
# It prevents infinite recursion.
with no_dispatch():
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
logging.getLogger("LoggingTensor").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
return rs
# https://stackoverflow.com/questions/36408496/python-logging-handler-to-append-to-list
class LoggingTensorHandler(logging.Handler):
log_list: List[str]
next_shortid: int
def __init__(self, log_list: List[str]) -> None:
logging.Handler.__init__(self)
self.log_list = log_list
self.next_shortid = 0
# WARNING: not deterministic over multiple threads, this matters for
# autograd
def _shortid(self, o: object) -> int:
if not hasattr(o, '_shortid'):
o._shortid = self.next_shortid
self.next_shortid += 1
return o._shortid
def _fmt(self, a: object) -> str:
return f'${self._shortid(a)}' if isinstance(a, LoggingTensor) else repr(a)
def emit(self, record):
fmt_args = ", ".join(itertools.chain(
(self._fmt(a) for a in record.args[0]),
(f"{k}={self._fmt(v)}" for k, v in record.args[1].items())
))
fmt_rets = ", ".join(self._fmt(a) for a in record.args[2]) \
if isinstance(record.args[2], (list, tuple)) else self._fmt(record.args[2])
self.log_list.append(f'{fmt_rets} = {record.msg}({fmt_args})')
def log_input(name: str, var: object):
logging.getLogger("LoggingTensor").info("input", (name,), {}, (var,))
@contextlib.contextmanager
def capture_logs() -> Iterator[List[str]]:
logger = logging.getLogger("LoggingTensor")
log_list = []
handler = LoggingTensorHandler(log_list)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
logger.propagate = False
try:
yield log_list
finally:
logger.removeHandler(handler)
class TestPythonDispatch(TestCase):
def test_basic(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.tensor([3.0], requires_grad=True))
log_input("x", x)
y = x * x
saved_x = y.grad_fn._saved_self
grad_y = LoggingTensor(torch.tensor([1.0]))
log_input("grad_y", grad_y)
g, = torch.autograd.grad((y,), (x,), (grad_y,))
self.assertEqual(g.elem, torch.tensor([6.0]))
with torch.no_grad():
self.assertEqual(saved_x, x)
self.assertEqual(saved_x._version, x._version)
x.add_(2)
self.assertEqual(saved_x, x)
# TODO: figure out why broken
# self.assertEqual(saved_x._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.mul($0, $0)
$2 = input('grad_y')
$3 = torch._ops.aten.mul($2, $0)
$4 = torch._ops.aten.mul($2, $0)
$5 = torch._ops.aten.add($4, $3)''')
def test_out(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.zeros(1))
log_input("x", x)
log_input("y", y)
torch.abs(x, out=y)
self.assertEqual(y.elem, torch.ones(1))
# TODO: arguably this shouldn't pass and we should complain
# that out isn't a kwarg
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.abs($0, out=$1)''')
def test_kwarg_only(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.ones(1, 1))
z = LoggingTensor(torch.ones(1))
log_input("x", x)
log_input("y", y)
log_input("z", z)
torch.addmv(x, y, z)
torch.addmv(x, y, z, beta=1)
torch.addmv(x, y, z, beta=2)
torch.addmv(x, y, z, alpha=2)
torch.addmv(x, y, z, beta=2, alpha=2)
# The expectation is that beta/alpha don't show up when they're
# defaulted. This is even if the user explicitly specified it.
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = input('z')
$3 = torch._ops.aten.addmv($0, $1, $2)
$4 = torch._ops.aten.addmv($0, $1, $2)
$5 = torch._ops.aten.addmv($0, $1, $2, beta=2)
$6 = torch._ops.aten.addmv($0, $1, $2, alpha=2)
$7 = torch._ops.aten.addmv($0, $1, $2, beta=2, alpha=2)''')
def test_kwarg_only_and_positional_default(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.ones(1))
log_input("x", x)
log_input("y", y)
torch.ops.aten.kl_div(x, y)
torch.ops.aten.kl_div(x, y, 2)
torch.ops.aten.kl_div(x, y, log_target=True)
torch.ops.aten.kl_div(x, y, 2, log_target=True)
# What we are testing here is that we omit reduction
# if it is defaulted, even if a kwarg is set
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.kl_div($0, $1)
$3 = torch._ops.aten.kl_div($0, $1, 2)
$4 = torch._ops.aten.kl_div($0, $1, log_target=True)
$5 = torch._ops.aten.kl_div($0, $1, 2, log_target=True)''')
def test_list_ret(self) -> None:
# test all sequence types are permissible returns
for list_type in (list, tuple):
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func == torch.ops.aten.split:
with no_dispatch():
return list_type(torch.split(*args))
else:
raise AssertionError(f"unrecognized func: {func}")
self.assertEqual(
torch.split(A(torch.tensor([0, 1])), 2),
torch.split(torch.tensor([0, 1]), 2)
)
def test_invalid_ret(self) -> None:
# test invalid return gets reasonable error message
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return "arf"
# Wobbles depending on NDEBUG mode of pybind11
self.assertRaisesRegexp(
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(),
)
self.assertExpectedRaisesInline(
RuntimeError, lambda: A(torch.zeros(1)).detach(),
"""detach returned invalid type str, expected Tensor"""
)
def test_metadata_change_not_allowed(self) -> None:
x = LoggingTensor(torch.ones(1))
y = x.data
self.assertIsInstance(y, LoggingTensor)
self.assertRaises(RuntimeError, lambda: y.resize_(4))
def test_storage(self) -> None:
# For now, just make sure it doesn't crash. Ideally, we should
# return some virtual storage that is safe to work with
x = LoggingTensor(torch.ones(1))
self.assertRaises(RuntimeError, lambda: x.storage())
def test_make_wrapper_subclass_noalloc(self) -> None:
# This is ludicrously big (8TB) and this should pass because wrapper
# subclasses don't allocate
torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,))
def test_version(self) -> None:
x = LoggingTensor(torch.ones(1))
prev_vc = x._version
x.detach().add_(2)
cur_vc = x._version
self.assertNotEqual(prev_vc, cur_vc)
x.data.add_(2)
self.assertEqual(cur_vc, x._version)
def test_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
# The big tests for code coverage are test_precedence_semantics in
# test_overrides.py; this is just to make sure it is wired up at all
# correctly for __torch_dispatch__
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))))
def test_format(self) -> None:
x = LoggingTensor(torch.ones(1))
s1 = str(x)
s2 = repr(x)
s3 = f"{x}"
self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""")
self.assertEqual(s1, s2)
self.assertEqual(s1, s3)
def test_custom_autograd(self) -> None:
escape = [None]
class Square(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x ** 2
ctx.save_for_backward(x)
return y
@staticmethod
def backward(ctx, grad_output):
assert isinstance(grad_output, LoggingTensor)
x, = ctx.saved_tensors
assert isinstance(x, LoggingTensor)
escape[0] = x
return grad_output * 2 * x
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1, requires_grad=True))
log_input("x", x)
x.grad = LoggingTensor(torch.zeros(1))
log_input("x.grad", x.grad)
y = Square.apply(x)
grad_output = LoggingTensor(torch.ones(1))
log_input("grad_output", grad_output)
y.backward(grad_output)
with torch.no_grad():
self.assertEqual(escape[0], x)
self.assertEqual(escape[0]._version, x._version)
# TODO: figure out why x.requires_grad = False doesn't
# trigger an error for LoggingTensor
x.add_(2)
self.assertEqual(escape[0], x)
# TODO: figure out why this is broken
# self.assertEqual(escape[0]._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('x.grad')
$2 = torch._ops.aten.pow($0, 2)
$3 = input('grad_output')
$4 = torch._ops.aten.mul($3, tensor(2))
$5 = torch._ops.aten.mul($4, $0)
$6 = torch._ops.aten.add_($1, $5)''')
def test_subclass_creation(self):
# Make sure these statements runs without error
# In particular checking that when internal detach returns
# subclasses, these are cleanly overwritten.
class Foo(torch.Tensor):
pass
err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor"
with self.assertRaisesRegex(RuntimeError, err_msg):
a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(RuntimeError, err_msg):
b = LoggingTensor(torch.rand(2)).as_subclass(Foo)
with self.assertRaisesRegex(RuntimeError, err_msg):
Foo(LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"):
torch.Tensor._make_wrapper_subclass(Foo, (2, 2))
def test_new_ones(self) -> None:
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return MyTensor(3)
self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor)
def test_enable_python_mode_error(self) -> None:
with self.assertRaisesRegex(ValueError, "__torch_dispatch__"):
with enable_python_mode(torch.Tensor):
pass
z = LoggingTensor(torch.empty([]))
with self.assertRaisesRegex(ValueError, "must be the type"):
with enable_python_mode(z):
pass
def test_enable_python_mode_basic(self) -> None:
with enable_python_mode(LoggingTensor):
z = torch.empty([])
self.assertTrue(isinstance(z, LoggingTensor))
def test_enable_python_mode_unrelated_tensors(self) -> None:
x = torch.randn([])
y = torch.randn([])
with enable_python_mode(LoggingTensor):
z = x + y
self.assertTrue(isinstance(z, LoggingTensor))
def test_enable_python_mode_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
a = A(torch.empty(1))
b = B(torch.empty(1))
with self.assertRaises(ErrorA):
a + a
# B has precedence over A due to the subclass relationship
with self.assertRaises(ErrorB):
with enable_python_mode(A):
b + b
with self.assertRaises(ErrorB):
with enable_python_mode(B):
a + a
with self.assertRaises(ErrorB):
with enable_python_mode(B):
a + b
def test_enable_python_mode_respects_no_dispatch(self) -> None:
with enable_python_mode(LoggingTensor):
z = torch.ones([2, 3])
self.assertTrue(isinstance(z, LoggingTensor))
with no_dispatch():
expected = torch.ones([2, 3])
self.assertEqual(z.elem, expected)
def test_nested_enable_python_mode(self) -> None:
with self.assertRaisesRegex(RuntimeError, "has already been set"):
with enable_python_mode(LoggingTensor):
with enable_python_mode(LoggingTensor):
pass
def test_enable_python_mode_subclass_autograd_device_check(self) -> None:
class NonWrapperSublass(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# Wrong device here!
r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, NonWrapperSublass) else e
def wrap(e):
return NonWrapperSublass(e) if isinstance(e, torch.Tensor) else e
# no_dispatch is only needed if you use enable_python_mode.
# It prevents infinite recursion.
with no_dispatch():
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
logging.getLogger("NonWrapperSublass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
return rs
x = NonWrapperSublass(torch.tensor([3.0, 4.0], requires_grad=True))
y = torch.randn(2, requires_grad=True)
z = x * y
self.assertIsInstance(z, NonWrapperSublass)
z.sum().backward(torch.tensor(1))
self.assertEqual(x.grad, y)
self.assertEqual(y.grad, x)
if __name__ == '__main__':
run_tests()