blob: 68591666d101f8a4e8a493c25a391e7f061093ff [file] [log] [blame]
## @package sparse_lookup
# Module caffe2.python.layers.sparse_lookup
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
get_categorical_limit,
IdList,
IdScoreList,
LayerParameter,
LayerPsParam,
ModelLayer,
)
import functools
import math
import numpy as np
import operator
class SparseLookup(ModelLayer):
_supported_reducers = ['PositionWeighted', 'LogMeanExp', 'LogSumExp', 'Max',
'Mean', 'Sum', 'Sqrt']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
if reducer == "PositionWeighted":
self.external_weights = input_record.values()
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
# TODO Add some asserts about input type
assert reducer in self._supported_reducers, "Unsupported reducer: {}".\
format(reducer)
self.reducer = reducer
input_dim = get_categorical_limit(input_record)
assert input_dim is not None, "Unbounded features are not supported"
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
model.net.NextScopedBlob(name + '_output'),
)
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = model.net.NextScopedBlob(name + "_w")
if schema.equal_schemas(self.input_record, IdList):
sparse_key = self.input_record.items()
elif schema.equal_schemas(
self.input_record,
IdScoreList,
check_field_types=False):
sparse_key = self.input_record.keys()
else:
raise NotImplementedError()
if self.input_record.lengths.metadata:
avg_length = self.input_record.lengths.metadata.expected_value
else:
avg_length = None
self.params.append(
LayerParameter(
parameter=self.w,
initializer=core.CreateOperator(self.weight_init[0],
[],
self.w,
shape=self.shape,
**self.weight_init[1]
),
optimizer=weight_optim,
ps_param=LayerPsParam(
sparse_key=sparse_key,
average_length=avg_length
)
))
def get_memory_usage(self):
return functools.reduce(operator.mul, self.shape) * 4
def get_fp16_compatible_parameters(self):
return [self.w]
def add_ops(self, net):
if schema.equal_schemas(self.input_record, IdList):
if self.reducer in ['Sum', 'Mean']:
net.__getattr__('SparseLengths' + self.reducer)(
[
self.w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
engine='fp16'
)
elif self.reducer == 'Sqrt':
sqrt_weight = net.LengthsToWeights(
[self.input_record.lengths()],
[self.input_record.lengths() + '_sqrt'],
power=0.5
)
net.SparseLengthsWeightedSum(
[
self.w,
sqrt_weight,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
engine='fp16'
)
else:
table_rows = net.Gather([self.w, self.input_record.items()])
segment_ids = net.LengthsToSegmentIds(
self.input_record.lengths(),
self.input_record.lengths() + '_sid')
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segment_ids],
self.output_schema.field_blobs(),
engine='fp16'
)
elif schema.equal_schemas(
self.input_record,
IdScoreList,
check_field_types=False):
if self.reducer in ['Sum', 'Mean']:
net.__getattr__('SparseLengthsWeighted' + self.reducer)(
[
self.w,
self.input_record.values(),
self.input_record.keys(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
engine='fp16'
)
elif self.reducer == 'PositionWeighted':
net.SparseLengthsWeightedSum(
[
self.w,
self.external_weights,
self.input_record.keys(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
grad_on_weights=1,
engine='fp16'
)
else:
raise "Only Sum, Mean is supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
else:
raise "Unsupported input type {0}".format(self.input_record)