blob: 121026cbf8299bcce4a2f7097347231d95e8718c [file] [log] [blame]
## @package optimizers
# Module caffe2.python.layers.optimizers
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import context
@context.define_context(allow_default=True)
class OptimizerContext(object):
"""
Scope driven way to provide optimizers to layers.
Optimizer can be fetched through the 'get_optimizer' method.
"""
def __init__(self):
self._optimizers = {}
self._optimizers_list = []
def _rebuild_optimizers(self):
self._optimizers = {}
for m in self._optimizers_list:
self._optimizers.update(m)
def get_optimizer(self, name):
assert name in self._optimizers, (
"{} optimizer is not provided!".format(name))
return self._optimizers.get(name)
def push_optimizers(self, optimizers):
# optimizer override is allowed
self._optimizers_list.append(optimizers)
self._optimizers.update(optimizers)
def pop_optimizers(self):
assert len(self._optimizers_list) > 0
self._optimizers_list.pop()
self._rebuild_optimizers()
class Optimizers(object):
"""
Optimizers context to provide optimizers to layers
within the context.
Example usage:
optimizers = {'optim1': optim1, 'optim2': optim2}
with Optimizers(optimizers):
optim = OptimizerContext.current().get_optimizer('optim1')
layer(optim=optim)
"""
def __init__(self, optimizers):
self._optimizers = optimizers
def __enter__(self):
OptimizerContext.current().push_optimizers(self._optimizers)
return self
def __exit__(self, type, value, traceback):
OptimizerContext.current().pop_optimizers()