| ## @package optimizers |
| # Module caffe2.python.layers.optimizers |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import context |
| |
| |
| @context.define_context(allow_default=True) |
| class OptimizerContext(object): |
| """ |
| Scope driven way to provide optimizers to layers. |
| Optimizer can be fetched through the 'get_optimizer' method. |
| """ |
| |
| def __init__(self): |
| self._optimizers = {} |
| self._optimizers_list = [] |
| |
| def _rebuild_optimizers(self): |
| self._optimizers = {} |
| for m in self._optimizers_list: |
| self._optimizers.update(m) |
| |
| def get_optimizer(self, name): |
| assert name in self._optimizers, ( |
| "{} optimizer is not provided!".format(name)) |
| return self._optimizers.get(name) |
| |
| def push_optimizers(self, optimizers): |
| # optimizer override is allowed |
| self._optimizers_list.append(optimizers) |
| self._optimizers.update(optimizers) |
| |
| def pop_optimizers(self): |
| assert len(self._optimizers_list) > 0 |
| self._optimizers_list.pop() |
| self._rebuild_optimizers() |
| |
| |
| class Optimizers(object): |
| """ |
| Optimizers context to provide optimizers to layers |
| within the context. |
| |
| Example usage: |
| optimizers = {'optim1': optim1, 'optim2': optim2} |
| with Optimizers(optimizers): |
| optim = OptimizerContext.current().get_optimizer('optim1') |
| layer(optim=optim) |
| """ |
| def __init__(self, optimizers): |
| self._optimizers = optimizers |
| |
| def __enter__(self): |
| OptimizerContext.current().push_optimizers(self._optimizers) |
| return self |
| |
| def __exit__(self, type, value, traceback): |
| OptimizerContext.current().pop_optimizers() |