blob: c9b480464108172fb6a6a2c0d390ee8eb99e75b3 [file] [log] [blame]
#pragma once
#include <ATen/ExpandUtils.h>
#include <ATen/NestedTensorImpl.h>
#include <ATen/core/Tensor.h>
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <c10/core/Stream.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/util/DimVector.h>
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/zeros.h>
#endif
#include <cstdint>
#include <utility>
namespace torch {
namespace autograd {
using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>;
using MetadataShape = std::variant<SymIntSmallVec, at::Tensor>;
/**
* Records TensorOptions, shape of the tensor, whether or not the Python
* dispatch key is set (tensor subclass), and, where applicable, the stream the
* corresponding operation took place on.
*
* If is_valid() is false, then the corresponding input is not used and may be
* an undefined tensor.
*/
struct InputMetadata {
InputMetadata() = default;
InputMetadata(
const at::TensorOptions& options,
MetadataShape input_shape,
bool is_tensor_subclass,
bool is_nested)
: options_{options},
shape_{std::move(input_shape)},
is_tensor_subclass_{is_tensor_subclass},
is_nested_{is_nested},
was_default_constructed_{false} {
auto device_ = options.device();
stream_ = c10::impl::getDeviceGuardImpl(device_.type())->getStream(device_);
}
InputMetadata(const at::Tensor& t)
: InputMetadata(
t.options(),
compute_variant_shape(t),
t.unsafeGetTensorImpl()->is_python_dispatch(),
t.is_nested()) {}
const at::TensorOptions& options() const {
return options_;
}
caffe2::TypeMeta dtype() const {
return options_.dtype();
}
at::Device device() const {
return options_.device();
}
at::Layout layout() const {
return options_.layout();
}
c10::Stream stream() const {
return stream_;
}
bool is_tensor_subclass() const {
return is_tensor_subclass_;
}
at::Tensor zeros_like() const {
TORCH_CHECK(
!is_nested_, "Zeros is not currently supported for nested tensors.")
return at::zeros_symint(shape_as_dim_vector(), options_);
}
void check_nestedness_same(const at::Tensor& grad) const {
bool grad_is_subclass = grad.unsafeGetTensorImpl()->is_python_dispatch();
bool grad_is_nested = grad.is_nested();
bool grad_is_cpp_nested = grad_is_nested && !grad_is_subclass;
TORCH_CHECK(
grad_is_cpp_nested == is_cpp_nested_tensor() &&
grad_is_nested == is_nested_,
"grad and the input wrt the gradient that is being computed for need to be "
"either both nested or both non-nested tensors. Also note that nested "
"tensors with different layouts do not compose currently.");
}
bool is_same_shape(const at::Tensor& grad) const {
check_nestedness_same(grad);
if (is_cpp_nested_tensor()) {
return grad._nested_tensor_size().is_same_size(shape_as_tensor());
}
return grad.sym_sizes().equals(shape_as_dim_vector());
}
bool is_expandable_to_shape(const at::Tensor& grad) const {
// Currently NestedTensors are not expandable. If this support is added then
// updates to reduce_grad will be needed
check_nestedness_same(grad);
return grad.is_nested()
? false
: at::is_expandable_to(shape_as_dim_vector(), grad.sym_sizes());
}
at::Tensor reduce_grad(at::Tensor& grad) const {
// Currently reduce_grad is only called if is_expandable_to_shape returns
// true For nested tensors this always returns False, so this check
// shouldn't fail
TORCH_INTERNAL_ASSERT(!grad.is_nested() && !is_nested_)
return at::sum_to(std::move(grad), shape_as_dim_vector());
}
std::stringstream incompatible_shape_error_message(
const size_t index,
const at::Tensor& grad) const {
std::stringstream ss;
ss << "invalid gradient at index " << index << " - got ";
if (grad.is_nested() && !grad.unsafeGetTensorImpl()->is_python_dispatch()) {
ss << grad._nested_tensor_size();
} else {
ss << grad.sym_sizes();
}
ss << " but expected shape compatible with ";
if (is_cpp_nested_tensor()) {
ss << shape_as_tensor();
} else {
ss << shape_as_dim_vector();
}
return ss;
}
bool was_default_constructed() const {
return was_default_constructed_;
}
bool is_cpp_nested_tensor() const {
bool ret = std::holds_alternative<at::Tensor>(shape_);
TORCH_INTERNAL_ASSERT(ret == (is_nested_ && !is_tensor_subclass_))
return ret;
}
bool is_nested_tensor() const {
return is_nested_;
}
c10::SymIntArrayRef shape_as_dim_vector() const {
const auto& dim_shape = std::get<SymIntSmallVec>(shape_);
return c10::SymIntArrayRef(dim_shape.data(), dim_shape.size());
}
// Danger: not thread safe, caller must protect with lock
SymIntSmallVec& mutable_shape_as_dim_vector() {
return std::get<SymIntSmallVec>(shape_);
}
private:
MetadataShape compute_variant_shape(const at::Tensor& input) {
if (input.is_nested() &&
!input.unsafeGetTensorImpl()->is_python_dispatch()) {
auto nested_size = input._nested_tensor_size();
return MetadataShape{std::in_place_type<at::Tensor>, nested_size};
}
return MetadataShape{std::in_place_type<SymIntSmallVec>, input.sym_sizes()};
}
at::Tensor shape_as_tensor() const {
return std::get<at::Tensor>(shape_);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const at::TensorOptions options_;
MetadataShape shape_;
c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device());
bool is_tensor_subclass_ = false;
bool is_nested_ = false;
bool was_default_constructed_ = true;
};
} // namespace autograd
} // namespace torch