| # Copyright (c) Meta Platforms, Inc. and affiliates |
| # Owner(s): ["oncall: distributed"] |
| import torch |
| from torch.distributed.pipelining import pipeline, SplitPoint |
| from torch.testing._internal.common_utils import run_tests, TestCase |
| |
| |
| d_hid = 16 |
| n_layers = 8 |
| microbatch_size = 4 |
| |
| |
| class MLPModule(torch.nn.Module): |
| def __init__(self, d_hid): |
| super().__init__() |
| self.net1 = torch.nn.Linear(d_hid, d_hid) |
| self.relu = torch.nn.ReLU() |
| self.net2 = torch.nn.Linear(d_hid, d_hid) |
| |
| def forward(self, x): |
| x = self.net1(x) |
| x = self.relu(x) |
| x = self.net2(x) |
| return x |
| |
| |
| class TransformerLike(torch.nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.layers = torch.nn.Sequential(*[MLPModule(d_hid) for _ in range(n_layers)]) |
| |
| def forward(self, x: torch.Tensor) -> torch.Tensor: |
| return self.layers(x) |
| |
| |
| class TransformerTests(TestCase): |
| def test_ir(self): |
| transformer = TransformerLike() |
| x = torch.randn(microbatch_size, d_hid) |
| |
| # Split into 2 stages |
| num_stages = 2 |
| split_spec = {f"layers.{n_layers // num_stages}": SplitPoint.BEGINNING} |
| |
| pipe = pipeline( |
| transformer, |
| (x,), |
| split_spec=split_spec, |
| ) |
| assert pipe.num_stages == num_stages, f"{pipe.num_stages=}, expect {num_stages}" |
| |
| def get_layers(module): |
| layers = [name for name, _ in module.layers.named_children()] |
| return layers |
| |
| # Collect all layers in pipe |
| layers = [] |
| for stage_idx in range(pipe.num_stages): |
| stage_mod = pipe.get_stage_module(stage_idx) |
| layers += get_layers(stage_mod) |
| |
| # Check layer completeness |
| orig_layers = get_layers(transformer) |
| assert sorted(layers) == sorted(orig_layers), f"{layers} != {orig_layers}" |
| print("Layers matched!") |
| |
| # Check equivalence |
| ref = transformer(x) |
| out = pipe(x)[0] |
| torch.testing.assert_close(out, ref) |
| print(f"Equivalence test passed {torch.sum(out)} ref {torch.sum(ref)}") |
| |
| |
| if __name__ == "__main__": |
| run_tests() |